Citation: | SI Yujie,XIAO Taoli,YUAN Hao,et al. Study on triaxial mechanical behavior and energy evolution of composite rock with coplanar double fractures[J]. Coal Science and Technology,2024,52(12):71−83. DOI: 10.12438/cst.2023-1566 |
In a large number of deep rock mass engineering, there is widespread contact between rocks with different properties, forming typical composite rock masses locally. The fracture configuration properties and confining pressure have a significant impact on the mechanical behavior, energy evolution, and crack propagation law of composite rock. In order to study the effects of fracture configuration properties and confining pressure on the mechanical behavior, energy, and microcrackevolution of composite rock, based on indoor uniaxial and triaxial compression tests, a triaxial compression particle model of composite rock with coplanar double fractures was established by using discrete element numerical simulation software, and the mechanical behavior , energy, and microcrack evolution of composite rock under different fracture inclination, length and confining pressure were systematically studied. The results indicate that: ① The increase of fracture inclination angle and confining pressure has an optimization effect on the mechanical properties of the rock sample, and the increase of fracture length has a deterioration effect on it. In addition, when the composite rock changes from unidirectional stress to three-directional stress, the mechanical properties change sharply and are significantly optimized. ② With the increase of fracture inclination, length and confining pressure, the energy of composite rock presents a U-shaped distribution, decreasing and increasing law respectively, and the energy loss mainly occurs after the damage stress. ③ During the deformation and loading process of rock samples, the microcracks generated are mainly tensile cracks, while shear cracks mainly occur after damage stress. The geometric parameters of fracture and confining pressure mainly affect the evolution characteristics of microcracks at the same stress threshold.
[1] |
刘泉声,时凯,黄兴. TBM应用于深部煤矿建设的可行性及关键科学问题[J]. 采矿与安全工程学报,2013,30(5):633−641.
LIU Quansheng,SHI Kai,HUANG Xing. Feasibility of application of TBM in construction of deep coal mine and its key scientific problems[J]. Journal of Mining & Safety Engineering,2013,30(5):633−641.
|
[2] |
闫军涛,胡潇,刘波. 上软下硬复合地层盾构隧洞开挖面稳定性研究[J]. 隧道建设(中英文),2020,40(2):223−230.
YAN Juntao,HU Xiao,LIU Bo. Stability of shield tunnel excavation face in upper-soft and lower-hard composite strata[J]. Tunnel Construction,2020,40(2):223−230.
|
[3] |
WU B,LAN Y B,HUANG W,et al. Study on vibration of tunnel blasting construction in upper soft and lower hard ground[J]. IOP Conference Series:Earth and Environmental Science,2019,242:062004. doi: 10.1088/1755-1315/242/6/062004
|
[4] |
张亮,王桂林,雷瑞德,等. 单轴压缩下不同长度单裂隙岩体能量损伤演化机制[J]. 中国公路学报,2021,34(1):24−34. doi: 10.3969/j.issn.1001-7372.2021.01.003
ZHANG Liang,WANG Guilin,LEI Ruide,et al. Energy damage evolution mechanism of single jointed rock mass with different lengths under uniaxial compression[J]. China Journal of Highway and Transport,2021,34(1):24−34. doi: 10.3969/j.issn.1001-7372.2021.01.003
|
[5] |
陈祥,肖桃李,折海成. 三轴压缩条件下单裂隙岩样裂隙扩展研究[J]. 科学技术与工程,2022,22(26):11567−11576.
CHEN Xiang,XIAO Taoli,SHE Haicheng. Triaxial compression condition order fracture rock fissure extension study[J]. Science Technology and Engineering,2022,22(26):11567−11576.
|
[6] |
刘新喜,李玉,范子坚,等. 干湿循环作用下单裂隙炭质页岩能量演化与破坏特征研究[J]. 岩土力学,2022,43(7):1761−1771.
LIU Xinxi,LI Yu,FAN Zijian,et al. Energy evolution and failure characteristics of single fissure carbonaceous shale under drying-wetting cycles[J]. Rock and Soil Mechanics,2022,43(7):1761−1771.
|
[7] |
HUANG Y H,YANG S Q. Mechanical and cracking behavior of granite containing two coplanar flaws under conventional triaxial compression[J]. International Journal of Damage Mechanics,2019,28(4):590−610. doi: 10.1177/1056789518780214
|
[8] |
YANG S Q. Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure[J]. Engineering Fracture Mechanics,2011,78(17):3059−3081. doi: 10.1016/j.engfracmech.2011.09.002
|
[9] |
章德超,肖桃李,折海成. 共面双裂隙对砂岩力学性质和破坏特征的影响[J]. 水电能源科学,2023,41(1):151−154,111.
ZHANG Dechao,XIAO Taoli,SHE Haicheng. Effect of coplanar double fissures on mechanical properties and failure characteristics of sandstone[J]. Water Resources and Power,2023,41(1):151−154,111.
|
[10] |
DU Y T,LI T C,LI W T,et al. Experimental study of mechanical and permeability behaviors during the failure of sandstone containing two preexisting fissures under triaxial compression[J]. Rock Mechanics and Rock Engineering,2020,53(8):3673−3697. doi: 10.1007/s00603-020-02119-x
|
[11] |
YOU W,DAI F,LIU Y,et al. Dynamic mechanical responses and failure characteristics of fractured rocks with hydrostatic confining pressures:an experimental study[J]. Theoretical and Applied Fracture Mechanics,2022,122:103570. doi: 10.1016/j.tafmec.2022.103570
|
[12] |
ZHOU X P,CHENG H,FENG Y F. An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression[J]. Rock Mechanics and Rock Engineering,2014,47(6):1961−1986. doi: 10.1007/s00603-013-0511-7
|
[13] |
ZHOU X P,WANG Y T,ZHANG J Z,et al. Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation:sensitivity to brittleness[J]. Rock Mechanics and Rock Engineering,2019,52(3):691−718. doi: 10.1007/s00603-018-1600-4
|
[14] |
ZHOU X P,LIAN Y J,WONG L N Y,et al. Understanding the fracture behavior of brittle and ductile multi-flawed rocks by uniaxial loading by digital image correlation[J]. Engineering Fracture Mechanics,2018,199:438−460. doi: 10.1016/j.engfracmech.2018.06.007
|
[15] |
WONG L N Y,LI H Q. Numerical study on coalescence of two pre-existing coplanar flaws in rock[J]. International Journal of Solids and Structures,2013,50(22-23):3685−3706. doi: 10.1016/j.ijsolstr.2013.07.010
|
[16] |
田文岭,杨圣奇,黄彦华. 非共面闭合裂隙巴西圆盘试验与颗粒流模拟研究[J]. 中国矿业大学学报,2017,46(3):537−545.
TIAN Wenling,YANG Shengqi,HUANG Yanhua. An experiment and particle flow study of Brazilian disk containing two non-coplanar filled fissures[J]. Journal of China University of Mining & Technology,2017,46(3):537−545.
|
[17] |
黄彦华,杨圣奇. 非共面双裂隙红砂岩宏细观力学行为颗粒流模拟[J]. 岩石力学与工程学报,2014,33(8):1644−1653.
HUANG Yanhua,YANG Shengqi. Particle flow simulation of macro- and meso-mechanical behavior of red sandstone containing two pre-existing non-coplanar fissures[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(8):1644−1653.
|
[18] |
WANG Z C,ZHAO W T,PAN K. Analysis of fracture evolution characteristics of coplanar double fracture rock under uniaxial compression[J]. Geotechnical and Geological Engineering,2020,38(1):343−352. doi: 10.1007/s10706-019-01022-9
|
[19] |
DONG Z J,YANG S Q,SUN B W,et al. Three-dimensional grain-based model study on triaxial mechanical behavior and fracturing mechanism of granite containing a single fissure[J]. Theoretical and Applied Fracture Mechanics,2022,122:103602. doi: 10.1016/j.tafmec.2022.103602
|
[20] |
杨庆,刘元俊. 岩石类材料裂纹扩展贯通的颗粒流模拟[J]. 岩石力学与工程学报,2012,31(S1):3123−3129.
YANG Qing,LIU Yuanjun. Simulations of crack propagation in rock-like materials using particle flow code[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(S1):3123−3129.
|
[21] |
YANG S Q,HUANG Y H,JING H W,et al. Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression[J]. Engineering Geology,2014,178:28−48. doi: 10.1016/j.enggeo.2014.06.005
|
[22] |
HUANG Y H,YANG S Q,ZHAO J. Three-dimensional numerical simulation on triaxial failure mechanical behavior of rock-like specimen containing two unparallel fissures[J]. Rock Mechanics and Rock Engineering,2016,49(12):4711−4729. doi: 10.1007/s00603-016-1081-2
|
[23] |
李新平,肖桃李,汪斌,等. 锦屏二级水电站大理岩不同应力路径下加卸载试验研究[J]. 岩石力学与工程学报,2012,31(5):882−889. doi: 10.3969/j.issn.1000-6915.2012.05.003
LI Xinping,XIAO Taoli,WANG Bin,et al. Experimental study of Jinping ii hydropower station marble under loading and unloading stress paths[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(5):882−889. doi: 10.3969/j.issn.1000-6915.2012.05.003
|
[24] |
肖桃李,李新平,贾善坡. 深部单裂隙岩体结构面效应的三轴试验研究与力学分析[J]. 岩石力学与工程学报,2012,31(8):1666−1673. doi: 10.3969/j.issn.1000-6915.2012.08.021
XIAO Taoli,LI Xinping,JIA Shanpo. Triaxial test research and mechanical analysis based on structure surface effect of deep rock mass with single fissure[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(8):1666−1673. doi: 10.3969/j.issn.1000-6915.2012.08.021
|
[25] |
肖桃李,李新平,郭运华. 三轴压缩条件下单裂隙岩石的破坏特性研究[J]. 岩土力学,2012,33(11):3251−3256.
XIAO Taoli,LI Xinping,GUO Yunhua. Experimental study of failure characteristic of single jointed rock mass under triaxial compression tests[J]. Rock and Soil Mechanics,2012,33(11):3251−3256.
|
[26] |
李晓红,卢义玉,康勇,等. 岩石力学实验模拟技术[M]. 北京:科学出版社,2007.
|
[27] |
JI P Q,ZHANG X P,ZHANG Q. A new method to model the non-linear crack closure behavior of rocks under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,2018,112:171−183. doi: 10.1016/j.ijrmms.2018.10.015
|
[28] |
LEE H,JEON S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression[J]. International Journal of Solids and Structures,2011,48(6):979−999. doi: 10.1016/j.ijsolstr.2010.12.001
|
[29] |
肖桃李,袁浩,折海成,等. 单轴压缩条件下类大理岩裂纹起裂特性与扩展规律[J]. 水利水电技术(中英文),2022,53(8):161−171.
XIAO Taoli,YUAN Hao,SHE Haicheng,et al. Crack initiation characteristics and propagation law of marble-like rock under uniaxial compression[J]. Water Resources and Hydropower Engineering,2022,53(8):161−171.
|
[30] |
张权,饶秋华,沈晴晴,等. 基于颗粒流的含交叉裂纹类岩石水力致裂细观机理研究[J]. 铁道科学与工程学报,2021,18(3):669−677.
ZHANG Quan,RAO Qiuhua,SHEN Qingqing,et al. Mesoscopic mechanism of hydraulic fracture of rock-like material with cross crack based on particle flow code[J]. Journal of Railway Science and Engineering,2021,18(3):669−677.
|
[31] |
POTYONDY D O,CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1329−1364. doi: 10.1016/j.ijrmms.2004.09.011
|
[32] |
陈卫忠,李术才,邱祥波,等. 岩石裂纹扩展的实验与数值分析研究[J]. 岩石力学与工程学报,2003,22(1):18−23. doi: 10.3321/j.issn:1000-6915.2003.01.003
CHEN Weizhong,LI Shucai,QIU Xiangbo,et al. Experimental and numerical research on crack propagation in rock under compression[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(1):18−23. doi: 10.3321/j.issn:1000-6915.2003.01.003
|
[33] |
MAS IVARS D,PIERCE M E,DARCEL C,et al. The synthetic rock mass approach for jointed rock mass modelling[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(2):219−244. doi: 10.1016/j.ijrmms.2010.11.014
|
[34] |
许可,肖桃李,赵云峰,等. 不同围压下裂隙位置对复合岩样力学特性的影响[J]. 矿业研究与开发,2023,43(1):67−75.
XU Ke,XIAO Taoli,ZHAO Yunfeng,et al. Influence of fracture position on mechanical properties of composite rock samples under different confining pressures[J]. Mining Research and Development,2023,43(1):67−75.
|
[35] |
孙家军,肖桃李,折海成,等. 围压作用下不同裂隙位置复合岩裂纹演化研究[J]. 水利水电技术(中英文),2023,54(9):190−200.
SUN Jiajun,XIAO Taoli,SHE Haicheng,et al. Study on the fracture evolution of composite rocks with different fracture locations under the action of surrounding pressure[J]. Water Resources and Hydropower Engineering,2023,54(9):190−200.
|
[36] |
CHENG J L,YANG S Q,CHEN K,et al. Uniaxial experimental study of the acoustic emission and deformation behavior of composite rock based on 3D digital image correlation (DIC)[J]. Acta Mechanica Sinica,2017,33(6):999−1021. doi: 10.1007/s10409-017-0706-3
|
[37] |
FAKHIMI A,VILLEGAS T. Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture[J]. Rock Mechanics and Rock Engineering,2007,40(2):193−211. doi: 10.1007/s00603-006-0095-6
|
[38] |
MÜHLHAUS H B,VARDOULAKIS I. The thickness of shear bands in granular materials[J]. Géotechnique,1987,37(3):271−283.
|
[39] |
Itasca Consulting Group Inc. PFC,Version 5. 0[M]. Minneapolis:Itasca Consulting Group Inc,2014.
|
[40] |
郝保钦,张昌锁,王晨龙,等. 岩石PFC2D模型细观参数确定方法研究[J]. 煤炭科学技术,2022,50(4):132−141.
HAO Baoqin,ZHANG Changsuo,WANG Chenlong,et al. Study on determination micro-parameters of rock PFC2D model[J]. Coal Science and Technology,2022,50(4):132−141.
|
[41] |
HUANG Y H,YANG S Q,ZENG W. Experimental and numerical study on loading rate effects of rock-like material specimens containing two unparallel fissures[J]. Journal of Central South University,2016,23(6):1474−1485. doi: 10.1007/s11771-016-3200-3
|
[42] |
BIENIAWSKI Z T. Mechanism of brittle fracture of rock part I—theory of the fracture process[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1967,4(4):395−406.
|
[43] |
TANG Y,OKUBO S,XU J,et al. Progressive failure behaviors and crack evolution of rocks under triaxial compression by 3D digital image correlation[J]. Engineering Geology,2019,249:172−185. doi: 10.1016/j.enggeo.2018.12.026
|
[44] |
MARTIN C D,CHANDLER N A. The progressive fracture of lac du bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1994,31(6):643−659.
|
[45] |
HUANG D,GU D M,YANG C,et al. Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression[J]. Rock Mechanics and Rock Engineering,2016,49(2):375−399. doi: 10.1007/s00603-015-0757-3
|
[46] |
HAWKINS A B,MCCONNELL B J. Sensitivity of sandstone strength and deformability to changes in moisture content[J]. Quarterly Journal of Engineering Geology,1992,25(2):115−130. doi: 10.1144/GSL.QJEG.1992.025.02.05
|