Advance Search
LEI Sheng,ZHANG Jinhu,LI Yanpeng,et al. Research on image restoration algorithm of uneven illumination in coal mine based on HSV space[J]. Coal Science and Technology,2024,52(S2):384−392. DOI: 10.12438/cst.2023-1539
Citation: LEI Sheng,ZHANG Jinhu,LI Yanpeng,et al. Research on image restoration algorithm of uneven illumination in coal mine based on HSV space[J]. Coal Science and Technology,2024,52(S2):384−392. DOI: 10.12438/cst.2023-1539

Research on image restoration algorithm of uneven illumination in coal mine based on HSV space

More Information
  • Received Date: October 24, 2023
  • Available Online: January 10, 2025
  • To accommodate the needs of intelligent construction in coal mines, a large number of digital image acquisition devices have gradually been deployed underground, playing an important role in the safe and efficient production of coal mine. However, the quality of the collected images is hard to ensure due to factors such as uneven illumination caused by the uneven arrangement of artificial light sources underground and noise introduced by coal dust and other particles. To address this issue, a method for image restoration in the HSV color space is proposed. This method involves converting the image to the HSV color space and separately extracting the value, hue, and saturation components; the improved Multi-Scale Retinex algorithm is used to repair and balance the value, noise analysis in the frequency domain with the application of a Butterworth filter is used to repair the hue, and a correlation-based adaptive saturation correction method is used to adjust the saturation; finally, the restored image is inversely transformed from the HSV space back to the RGB space, thus completing the image restoration. In terms of image restoration effects, the described method shows significant improvements over the classical Multi-Scale Retinex (MSR) algorithm and the Multi-Scale Retinex with Color Restore (MSRCR) algorithm, managing to maintain the color and edges of the image while improving its visual perception. The experimental comparison of different algorithms processed images in terms of standard deviation, mean gradient, and information entropy shows that the proposed image restoration algorithm has improved by 24.24%, 48.38%, and 1.43% respectively compared to the MSR algorithm, and by 8.68%, 39.88%, and 1.35% respectively compared to the MSRCR algorithm. The experimental results indicate that the described method can effectively enhance the quality of images and videos obtained from underground observations, providing high-quality image data support for mine safety production and intelligent decision-making.

  • [1]
    王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201001
    [2]
    王国法,张良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34−53.

    WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34−53.
    [3]
    程德强,钱建生,郭星歌,等. 煤矿安全生产视频AI识别关键技术研究综述[J]. 煤炭科学技术,2023,51(2):349−365.

    CHENG Deqiang,QIAN Jiansheng,GUO Xingge,et al. Review on key technologies of AI recognition for videos in coal mine[J]. Coal Science and Technology,2023,51(2):349−365.
    [4]
    CHENG Hengda,SHI Xiangjun. A simple and effective histogram equalization approach to image enhancement[J]. Digital Signal Processing,2004,14(2):158−170. doi: 10.1016/j.dsp.2003.07.002
    [5]
    王永强,江培蕾,李庆利. 基于约束PDF的均衡直方图图像增强技术[J]. 机械设计与制造,2010(5):231−232. doi: 10.3969/j.issn.1001-3997.2010.05.094

    WANG Yongqiang,JIANG Peilei,LI Qingli. Constrained PDF based histogram equalization for image constrast enhancement[J]. Machinery Design & Manufacture,2010(5):231−232. doi: 10.3969/j.issn.1001-3997.2010.05.094
    [6]
    KAUR M,KAUR J,KAUR J. Survey of contrast enhancement techniques based on histogram equalization[J]. International Journal of Advanced Computer Science and Applications,2011,2(7):137−141.
    [7]
    VOICU L I,MYLER H R,WEEKS A R. Practical considerations on color image enhancement using homomorphic filtering[J]. Journal of Electronic Imaging,1997,6(1):108−113. doi: 10.1117/12.251157
    [8]
    DELAC K,GRGIC M,KOS T. Sub-image homomorphic filtering technique for improving facial identification under difficult illumination conditions[J]. American journal of agricultural economics,2006.
    [9]
    张新明,沈兰荪. 基于小波的同态滤波器用于图像对比度增强[J]. 电子学报,2001,29(4):531−533. doi: 10.3321/j.issn:0372-2112.2001.04.025

    ZHANG Xinming,SHEN Lansun. Image contrast enhancement by wavelet based homomorphic filtering[J]. Acta Electronica Sinica,2001,29(4):531−533. doi: 10.3321/j.issn:0372-2112.2001.04.025
    [10]
    LAND E H,MCCANN J J. Lightness and retinex theory[J]. Journal of the Optical Society of America,1971,61(1):1−11. doi: 10.1364/JOSA.61.000001
    [11]
    JOBSON D J. Retinex processing for automatic image enhancement[J]. Journal of Electronic Imaging,2004,13(1):100−110. doi: 10.1117/1.1636183
    [12]
    PROVENZI E,DE CARLI L,RIZZI A,et al. Mathematical definition and analysis of the retinex algorithm[J]. Journal of the Optical Society of America A,Optics,Image Science,and Vision,2005,22(12):2613−2621. doi: 10.1364/JOSAA.22.002613
    [13]
    ELAD M,KIMMEL R,SHAKED D,et al. Reduced complexity Retinex algorithm via the variational approach[J]. Journal of Visual Communication and Image Representation,2003,14(4):369−388. doi: 10.1016/S1047-3203(03)00045-2
    [14]
    JANG J H,KIM S D,RA J B. Enhancement of optical remote sensing images by subband-decomposed multiscale retinex with hybrid intensity transfer function[J]. IEEE Geoscience and Remote Sensing Letters,2011,8(5):983−987. doi: 10.1109/LGRS.2011.2146227
    [15]
    付国文. 基于Retinex的图像增强算法研究及实现[D]. 上海:上海交通大学,2011.

    FU Guowen. Research and implementation of image enhancement algorithm based on retinex[D]. Shanghai:Shanghai Jiao Tong University,2011.
    [16]
    嵇晓强. 图像快速去雾与清晰度恢复技术研究[D]. 长春:中国科学院研究生院(长春光学精密机械与物理研究所),2012.

    JI Xiaoqiang. Research on image fast defogging and sharpness recovery technology[D]. Changchun:Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,2012.
    [17]
    占必超,吴一全,纪守新. 基于平稳小波变换和Retinex的红外图像增强方法[J]. 光学学报,2010,30(10):2788−2793. doi: 10.3788/AOS20103010.2788

    ZHAN Bichao,WU Yiquan,JI Shouxin. Infrared image enhancement method based on stationary wavelet transformation and retinex[J]. Acta Optica Sinica,2010,30(10):2788−2793. doi: 10.3788/AOS20103010.2788
    [18]
    王坤. 基于卷积神经网络的低光照图像增强算法研究[D]. 赣州:江西理工大学,2020.

    WANG Kun. Research on low-light image enhancement algorithm based on convolutional neural network[D]. Ganzhou:Jiangxi University of Science and Technology,2020.
    [19]
    FAN Linwei,ZHANG Fan,FAN Hui,et al. Brief review of image denoising techniques[J]. Visual Computing for Industry,Biomedicine,and Art,2019,2(1):1−12. doi: 10.1186/s42492-019-0012-y
    [20]
    YANG Min,LIANG Jingkun,ZHANG Jianhai,et al. Non-local means theory based Perona–Malik model for image denosing[J]. Neurocomputing,2013,120:262−267. doi: 10.1016/j.neucom.2012.08.063
    [21]
    TIAN Chunwei,FEI Lunke,ZHENG Wenxian,et al. Deep learning on image denoising:An overview[J]. Neural Networks,2020,131:251−275. doi: 10.1016/j.neunet.2020.07.025
    [22]
    LIN T C. SVM-based filter using evidence theory and neural network for image denosing[J]. Journal of Software Engineering and Applications,2013,6(3):106−110. doi: 10.4236/jsea.2013.63B023
    [23]
    VINCENT P,LAROCHELLE H,BENGIO Y,et al. Extracting and composing robust features with denoising autoencoders[C]// Proceedings of the 25th International Conference on Machine Learning - ICML '08. New York,NY,USA. ACM,2008:1096−1103.
    [24]
    KRIZHEVSKY A,HINTON G E. Using very deep autoencoders for content-based image retrieval[C]// The European Symposium on Artificial Neural Networks,Bruges,Belgium. ESANN,2011:489−494.
    [25]
    Keyvanrad M A,Pezeshki M,Homayounpour M A,et al. Deep belief networks for image denoising[C]//Proceedings of the International Conference on Learning Representation. Berlin,Germany. Springer,2014:1−6.
    [26]
    KHATAMI A,KHOSRAVI A,NGUYEN T,et al. Medical image analysis using wavelet transform and deep belief networks[J]. Expert Systems with Applications,2017,86:190−198. doi: 10.1016/j.eswa.2017.05.073
    [27]
    程德强,郑珍,姜海龙. 一种煤矿井下图像增强算法[J]. 工矿自动化,2015,41(12):31−34.

    CHENG Deqiang,ZHENG Zhen,JIANG Hailong. An image enhancement algorithm for coal mine underground[J]. Industry and Mine Automation,2015,41(12):31−34.
    [28]
    智宁,毛善君,李梅. 基于照度调整的矿井非均匀照度视频图像增强算法[J]. 煤炭学报,2017,42(8):2190−2197.

    ZHI Ning,MAO Shanjun,LI Mei. Enhancement algorithm based on illumination adjustment for non-uniform illuminance video images in coal mine[J]. Journal of China Coal Society,2017,42(8):2190−2197.
    [29]
    范伟强,刘毅. 基于自适应小波变换的煤矿降质图像模糊增强算法[J]. 煤炭学报,2020,45(12):4248−4260.

    FAN Weiqiang,LIU Yi. Fuzzy enhancement algorithm of coal mine degradation image based on adaptive wavelet transform[J]. Journal of China Coal Society,2020,45(12):4248−4260.
    [30]
    张立亚,郝博南,孟庆勇,等. 基于HSV空间改进融合Retinex算法的井下图像增强方法[J]. 煤炭学报,2020,45(S1):532−540.

    ZHANG Liya,HAO Bonan,MENG Qingyong,et al. Method of image enhancement in coal mine based on improved retex fusion algorithm in HSV space[J]. Journal of China Coal Society,2020,45(S1):532−540.
    [31]
    王诚聪,刘亚静. 矿井复杂环境视频监控图像增强算法研究[J]. 煤炭工程,2021,53(4):147−151.

    WANG Chengcong,LIU Yajing. Image enhancement algorithm for video surveillance in complex environment of underground mine[J]. Coal Engineering,2021,53(4):147−151.
    [32]
    龚云,颉昕宇. 基于同态滤波方法的煤矿井下图像增强技术研究[J]. 煤炭科学技术,2023,51(3):241−250.

    GONG Yun,XIE Xinyu. Research on coal mine underground image recognition technology based on homomorphic filtering method[J]. Coal Science and Technology,2023,51(3):241−250.
    [33]
    孔二伟,张亚邦,李佳悦,等. 面向煤矿井下低光照图像的增强方法[J]. 工矿自动化,2023,49(4):62−69,85.

    KONG Erwei,ZHANG Yabang,LI Jiayue,et al. An enhancement method for low light images in coal mines[J]. Journal of Mine Automation,2023,49(4):62−69,85.
    [34]
    樊占文,刘波. 基于改进的Retinex低照度图像自适应增强技术研究[J]. 工矿自动化,2021,47(S1):126−130.

    FAN Zhanwen,LIU Bo. Research on adaptive enhancement technology of low illumination image based on improved Retinex[J]. Industry and Mine Automation,2021,47(S1):126−130.
    [35]
    阮顺领,刘丹洋,白宝军,等. 基于自适应MSRCP算法的煤矿井下图像增强方法[J]. 矿业研究与开发,2021,41(11):186−192.

    RUAN Shunling,LIU Danyang,BAI Baojun,et al. Image enhancement method for underground coal mine based on the adaptive MSRCP algorithm[J]. Mining Research and Development,2021,41(11):186−192.
    [36]
    甘建旺. 矿井图像的去噪与增强算法研究[D]. 北京:北京石油化工学院,2021.

    GAN Jianwang. Research on denoising and enhancement algorithm of mine image[D]. Beijing:Beijing Institute of Petrochemical Technology,2021.
    [37]
    RAHMAN Z,JOBSON D J,WOODELL G A. Multi-scale retinex for color image enhancement[C]// Proceedings of 3rd IEEE International Conference on Image Processing. Piscataway,NJ,USA. IEEE,2002:1003−1006.
    [38]
    JOBSON D J,RAHMAN Z,WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing,1997,6(7):965−976. doi: 10.1109/83.597272
  • Related Articles

    [1]ZHANG Fan, LIU Ying, SONG Hui, ZHANG Jiarong, CHENG Haixing. Super-resolution reconstruction of mine image based on generative adversarial network[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(S1): 338-345. DOI: 10.12438/cst.2024-0298
    [2]TIAN Feng, CHEN Tingting, LIU Xiaopei. Retinex-Net mine image enhancement algorithm based on adaptive illumination estimation[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(7): 234-248. DOI: 10.12438/cst.2024-0561
    [3]WANG Yuanbin, GUO Yaru, LIU Jia, WANG Xu, WU Bingchao, LIU Meng. Low illumination image enhancement algorithm of CycleGAN coal mine based on attention mechanism and Dilated convolution[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S2): 375-383. DOI: 10.12438/cst.2023-1597
    [4]TIAN Zijian, WU Jiaqi, ZHANG Wenqi, CHEN Wei, ZHOU Tao, YANG Wei, WANG Shuai. An illuminance improvement and details enhancement method on coal mine low-light images based on Transformer and adaptive feature fusion[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(1): 297-310. DOI: 10.13199/j.cnki.cst.2023-0112
    [5]ZOU Liang, CHEN Zhifeng, TAN Zhiyi, YUAN Yilin, LEI Meng, HE Kun. Scratch detection and restoration of coal photomicrograph via deep neural network[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S2): 275-284. DOI: 10.13199/j.cnki.cst.2023-0058
    [6]WANG Manli, ZHANG Hang, LI Jiayue, ZHANG Changsen. Deep neural network-based image enhancement algorithm for low-illumination images underground coal mines[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(9): 231-241. DOI: 10.12438/cst.2022-1626
    [7]WANG Fei, YAN Jingjing, LI Yucheng, LIU Hongwei, GAO Yabin, Li Ziwen. Study on moisture re-absorption characteristics and equilibrium prediction model of coal dust with different rank[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(8): 160-168. DOI: 10.13199/j.cnki.cst.2022-0784
    [8]GONG Yun, XIE Xinyu. Research on coal mine underground image recognition technology based on homomorphic filtering method[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(3): 241-250. DOI: 10.13199/j.cnki.cst.2021-0774
    [9]WANG Guofa, LIU Feng, MENG Xiangjun, FAN Jingdao, WU Qunying, REN Huaiwei, PANG Yihui, XU Yajun, ZHAO Guorui, ZHANG Desheng, CAO Xiangang, DU Yibo, ZHANG Jinhu, CHEN Hongyue, MA Ying, ZHANG Kun. Research and practice on intelligent coal mine construction (primary stage)[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (8).
    [10]Restoration Algorithms of Degradation Image in Underground Mine Based on Dark Channel Prior[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (6).
  • Cited by

    Periodical cited type(6)

    1. 张嘉凡, 车虎斌, 张慧梅, 袁超, 刘小宇. 考虑裂隙贯穿度的岩石裂纹演化及声发射特性. 地下空间与工程学报. 2025(03)
    2. 王尚想,李宁. 基于PFC~(3D)模拟的卸荷岩柱破坏规律研究. 现代矿业. 2025(02): 52-56+61 .
    3. 张洁,冯国瑞,郭军,文晓泽,冯文明,张旭,张亮,DIAS Daniel. 法向扰动下裂隙砂岩的剪切力学性质与细观演化特征. 采矿与岩层控制工程学报. 2025(02): 182-197 .
    4. 胡善超,韩金明,程亚飞,亓佳利,黄俊鸿,高志豪,郭世豪,杨磊. 多孔套筒定向压裂力学机制及影响因素分析. 煤炭学报. 2024(08): 3366-3380 .
    5. 彭文彬,郭豪杰. 直剪加载下岩体能量演化及声发射特征数值模拟研究. 甘肃水利水电技术. 2024(10): 31-35 .
    6. 黄丹,许庆梅. 千枚岩力学特性与破坏特征研究. 石家庄铁道大学学报(自然科学版). 2024(04): 57-62 .

    Other cited types(8)

Catalog

    Article views (31) PDF downloads (12) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return