Citation: | HOU Zhongshuai,LIANG Zhao,CHEN Shiyue. Genesis, controlling factors and geological significance of low resistivity in Late Paleozoic transitional coal measures in Eastern North China[J]. Coal Science and Technology,2024,52(3):159−168. DOI: 10.12438/cst.2023-1531 |
Low-resistance layers are common in Late Paleozoic transitional coal measures in eastern North China. To clarify their genesis types, controlling factors and geological significance can fully reveal the geological information contained therein, which is of positive significance for the evaluation and exploration deployment of oil and gas resources in the relevant layers. Taking the low-resistance layers in the Taiyuan and Shanxi Formation in eastern North China as research object, their genesis types, controlling factors and geological significance were investigated based on the comprehensive use of cores, thin sections, SEM, carbon and oxygen isotopes and logging data. The results show that low-resistance layers in the Late Paleozoic transitional coal measures in eastern North China are mainly developed in the Tai 1 Member and the Shan 2 Member, and the genesis types include thin interbedding of sandstone and mudstone, high bound water volume and the development of conductive minerals, sedimentation and diagenesis control the formation of the low-resistance layers. The low resistivity of the Tai 1 Member can be attributed to thin interbedding of sandstone and mudstone and high bound water volume, tidal stratification and abundant micro-pore caused by tidal action promote the formation of low resistance in Tai 1 member under the barrier coast background. The low resistivity of the Shan 2 Member can be attributed to the dense development of siderite, stably reducing environment in water column and diagenetic evolution of sedimentary organic matter jointly control the formation of low resistance in the Shan 2 Member under the delta background. The low resistivity and high capillary bound water volume of the Tai 1 Member indicates tidal flat deposition, suggesting that the sedimentary evolution of the Taiyuan Formation is a process of regression, which is in response to the rapid expansion of Gondwana glacier and rapid global sea level fall in the early stage of early Permian. The low resistivity and high photoelectric absorption cross-section index of the Shan 2 Member indicates deltaic front deposition, suggesting that the Shanxi Formation consists of one phase of delta deposition.
[1] |
侯中帅,周立宏,陈世悦,等. 大港探区上古生界储层类型与控制因素[J]. 中国矿业大学学报,2018,47(5):1021−1037.
HOU Zhongshuai,ZHOU Lihong,CHEN Shiyue, et al. Reservoir types and controlling factors of Upper Paleozoic in Dagang exploration area[J]. Journal of China University of Mining & Technology,47(5):1021−1037.
|
[2] |
金凤鸣,王 鑫,李宏军,等. 渤海湾盆地黄骅坳陷乌马营潜山内幕原生油气藏形成特征[J]. 石油勘探与开发,2019,46(3):521−529.
JIN Fengming,WANG Xin,LI Hongjun,et al. Formation of the primary petroleum reservoir in Wumaying inner buried-hill of Huanghua Depression,Bohai Bay Basin,China[J]. Petroleum Exploration and Development,2019,46(3):521−529.
|
[3] |
孙沛沛,操应长,周立宏,等. 大港探区扣村潜山带二叠系优质砂岩储层成因机制[J]. 中国石油大学学报(自然科学版),2022,46(2):12−24.
SUN Peipei,CAO Yingchang,ZHOU Lihong,et al. Genetic mechanisms of high quality sandstones reservoirs in Permian of Koucun buried hill,Dagang exploration area[J]. Journal of China University of Petroleum (Edition of Natural Science),2022,46(2):12−24.
|
[4] |
游瑜春,刘伟兴,谭振华,等. 苏北盆地溱潼凹陷低阻油气层成因研究[J]. 天然气地球科学,2009,20(6):941−944.
YOU Yuchun,LIU Weixing,TAN Zhenhua,et al. Genesis of Low-resistivity Reservoirs in Qintong Sag,Subei Basin[J]. Natural Gas Geoscience,2009,20(6):941−944.
|
[5] |
廖明光,苏崇华,唐 洪,等. 砂泥岩薄互层低阻油层地质成因-以珠江口盆地A 油藏M1 油组为例[J]. 新疆石油地质,2010,31(2):154−157.
LIAO Mingguang,SU Chonghua,TANG Hong,et al. Geological Genesis of Low Resistivity Formation with Thin Sand-Shale Interlayer-An example from M1 oil measure of A reservoir in Pearl River Mouth basin[J]. Xinjiang Petroleum Geology,2010,31(2):154−157.
|
[6] |
蒋裕强,张 春,谭 勇,等. 川东南地区须家河组低阻气层成因机制[J]. 石油与天然气地质,2011,32(1):124−132.
JIANG Yuqiang,ZHANG Chun,TAN Yong,et al. Genetic pattern of low-resistivity gas reservoirs in the Xujiahe Formation,Southeastern Sichuan Province[J]. Oil & Gas Geology,2011,32(1):124−132.
|
[7] |
杨小兵,张树东,张志刚,等. 低阻页岩气储层的测井解释评价[J]. 成都理工大学学报(自然科学版),2015,42(6):692−699.
YANG Xiaobing,ZHANG Shudong,ZHANG Zhigang,et al. Logging interpretation and evaluation of low resistivity shale gas reservoirs[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2015,42(6):692−699.
|
[8] |
杨锐祥,王向公,白松涛,等. Oriente 盆地海相低阻油层成因机理及测井评价方法[J]. 岩性油气藏,2017,29(6):84−90.
YANG Ruixiang,WANG Xianggong,BAI Songtao,et al. Formation mechanism and log evaluation methods of marine low resistivity reservoir in Oriente Basin[J]. Lithologic Reservoirs,2017,29(6):84−90.
|
[9] |
韩如冰,田昌炳,马 思,等. 苏丹穆格拉德盆地福拉凹陷AG1 层低阻油层形成机制及其控制因素[J]. 中国石油大学学报(自然科学版),2018,42(3):31−40.
HAN Rubing,TIAN Changbing,MA Si,et al. Formation mechanisms and controlling factors of low resistivity pays of AG1 layer in Fula Sag,Muglad Basin,Sudan[J]. Journal of China University of Petroleum (Edition of Natural Science),2018,42(3):31−40.
|
[10] |
孙建孟,熊 铸,罗 红,等. 扬子地区下古生界页岩气储层低阻成因分析及测井评价[J]. 中国石油大学学报(自然科学版),2018,42(5):47−56.
SUN Jianmeng,XIONG Zhu,LUO Hong,et al. Mechanism analysis and logging evaluation of low resistivity in lower Paleozoic shale gas reservoirs of Yangtze region[J]. Journal of China University of Petroleum (Edition of Natural Science),2018,42(5):47−56.
|
[11] |
翟利华,林艳波,秦 智,等. 鄂尔多斯盆地姬塬地区延长组长4+5低阻油层成因及识别方法[J]. 油气地质与采收率,2018,25(2):50−57.
ZHAI Lihua,LIN Yanbo,QIN Zhi,et al. Genetic mechanism and identification methods of low resistivity oil reservoirs in Chang4+5 member of Yanchang Formation in Jiyuan area,Ordos Basin[J]. Petroleum Geology and Recovery Efficiency,2018,25(2):50−57.
|
[12] |
郑 华,李云鹏,徐锦绣,等. 渤海海域低阻油层地质成因机理与识别:以辽东湾旅大 A 油田为例[J]. 断块油气田,2018,25(1):22−28.
ZHENG Hua,LI Yunpeng,XU Jinxiu, et al. Geological genetic mechanism and identification of low resistivity reservoir in Bohai sea area:a case study of LD-A Oilfield in Liaodong Bay[J]. Fault-Block Oil & Gas Field,2018,25(1):22−28.
|
[13] |
FIELDING C R,FRANK T D,BIRGENHEIER L P. A revised,late Palaeozoic glacial time-space framework for eastern Australia,and comparisons with other regions and events[J]. Earth-Science Reviews,2023,236:104263. doi: 10.1016/j.earscirev.2022.104263
|
[14] |
RYGEL M C,FIELDING C R,FRANK T D,et al. The magnitude of late Paleozoic glacioeustatic fluctuations:a synthesis[J]. Journal of Sedimentary Research,2008,78:500−511. doi: 10.2110/jsr.2008.058
|
[15] |
鲁 静,邵龙义,汪 浩,等. 低可容空间河流三角洲沉积层序与聚煤模式[J]. 中国矿业大学学报,2012,41(2):268−275.
LU Jing,SHAO Longyi,WANG Hao,et al. Sequence stratigraphy and coal accumulation of fluvial delta under low accommodation conditions[J]. Journal of China University of Mining & Technology,2012,41(2):268−275.
|
[16] |
侯中帅,陈世悦,郭宇鑫,等. 华北中南部博山地区上古生界沉积相与沉积演化特征[J]. 沉积学报,2018,36(4):731−742.
HOU Zhongshuai,CHEN Shiyue,GUO Yuxin,et al. Sedimentary facies and their evolution characteristics of Upper Paleozoic in Zibo Boshan Area,central and southern region of North China[J]. Acta Sedimentologica Sinica,2018,36(4):731−742.
|
[17] |
李明培,邵龙义,李智学,等. 华北地区石炭-二叠纪下煤组聚煤期岩相古地理[J]. 煤炭学报,2020,45(7):2399−2410.
LI Mingpei,SHAO Longyi,LI Zhixue,et al. Lithofacies palaeogeography of lower coal group accumulation period of Carboniferous Permian in North China[J]. Journal of China Coal Society,2020,45(7):2399−2410.
|
[18] |
HOU Zhongshuai,CHEN Shiyue,LIANG Zhao. Sedimentary features and sequence stratigraphy of the successions around the Carboniferouse-Permian boundary in the Ordos Basin:links to glacial and volcanic impacts[J]. Journal of Palaeogeography,2023,13(3):358−383.
|
[19] |
YANG J H,CAWOOD P A,MONTAÑEZ I P,et al. Enhanced continental weathering and large igneous province induced climate warming at the Permo-Carboniferous transition[J]. Earth and Planetary Science Letters,2020,534:116074. doi: 10.1016/j.jpgl.2020.116074
|
[20] |
LYU,D W,WANG L J,ISBELL J L,et al. Records of chemical weathering and volcanism linked to paleoclimate transition during the Late Paleozoic Icehouse[J]. Global and Planetary Change,2022,217:103934. doi: 10.1016/j.gloplacha.2022.103934
|
[21] |
赖 锦,庞小娇,赵 鑫,等. 测井地质学研究中的典型误区与科学思维[J]. 天然气工业,2022,42(7):31−44.
LAI Jin,PANG Xiaojiao,ZHAO Xin,et al. Typical misunderstandings and scientific ideas in well logging geology research[J]. Natural Gas Industry,2022,42(7):31−44.
|
[22] |
孙宝佃,周灿灿,赵建武. 油气层测井识别与评价[M]. 北京:石油工业出版社,2014,326−397.
SUN Baodian,ZHOU Cancan,ZHAO Jianhu. Logging identification and evaluation of oil and gas reservoir[M]. Beijing:Petroleum Industry Press,2014,326−397.
|
[23] |
中国石油勘探与生产公司. 低阻油气藏测井评价技术及应用[M]. 北京:石油工业出版社,2009,14−17.
PETROCHINA EXPLORATION and PRODUCTION COMPANY. Logging evaluation technology and application of low resistivity reservoir[M]. Beijing:Petroleum Industry Press,2009,14−17.
|
[24] |
赵 洪,党 犇,姚泾利,等. 鄂尔多斯盆地姬塬地区延长组长2低阻油层成因机理[J]. 石油实验地质,2009,31(6):588−592.
ZHAO Hong,DANG Ben,YAO Jingli,et al. Forming mechanism of Chang 2 low resistivity oil layer,Yanchang Formation,Jiyuan region,Ordos Basin[J]. Petroleum Geology & Experiment,2009,31(6):588−592.
|
[25] |
高楚桥. 复杂储层测井评价方法[M]. 北京:石油工业出版社,2003:71.
GAO Chuqiao. Well logging evaluation of complex reservoirs[M]. Beijing:Petroleum Industry Press,2003:71.
|
[26] |
周 杨,陈服军,陈桂珠,等. 高密度电阻率法测深原理及应用实例[M]. 郑州:黄河水利出版社,2012:8−27.
ZHOU Yang,CHEN Fujun,CHEN Guizhu,et al. Principle and application examples of high-density resistivity sounding[M]. Zhengzhou:Yellow River Conservancy Press,2012:8−27.
|
[27] |
斯伦贝谢测井公司. 测井解释常用岩石矿物手册[M]. 北京:石油工业出版社, 1998: 16−118.
SCHLUMBERGER. Commonly used Manual for logging interpretation of rocks and minerals[M]. Beijing:Petroleum Industry Press,1998: 16−118.
|
[28] |
CHEN Chao,MU Chuanlong,ZHOU Kenken,et al. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin,South China[J]. Marine and Petroleum Geology,2016,76:159−175. doi: 10.1016/j.marpetgeo.2016.04.022
|
[29] |
袁 静,王冠民,徐方建,等. 沉积学原理[M]. 北京:地质出版社,2013: 226−227.
YUAN Jin,WANG Guanmin,XU Fangjian,et al. Principles of Sedimentology[M]. Beijing:Geological Publishing House,2013: 226−227.
|
[30] |
WANG Donong,MAO Qiang,LIU Keyu,et al. Genetic mechanism of Carboniferous-Permian coal measures siderite nodules in an epicontinental sea basin-An example from the Zibo area in North China[J]. Ore Geology Reviews,2023,154:105254. doi: 10.1016/j.oregeorev.2022.105254
|
[31] |
ANTOSHKINA A I,RYABINKINA N N,VALYAEVA O V. Genesis of siderite nodules from the lower carboniferous terrigenous sequence in the Subpolar Urals[J]. Lithology and Mineral Resources,2017,52(2):111−124. doi: 10.1134/S0024490217020031
|
[32] |
SHI G R,CHEN Z Q. Lower Permian oncolites from South China:Implications for equatorial sea-level responses to Late Palaeozoic Gondwanan glaciation[J]. Journal of Asian Earth Sciences,2006,26:424−436. doi: 10.1016/j.jseaes.2005.10.009
|
1. |
梁鹏,郝美鲁,秦锡壮. 低阶煤选择性热萃取及产物分析研究进展. 洁净煤技术. 2025(02): 30-42 .
![]() | |
2. |
张博,姚少宇,孙宗盛,崔俸源. 高含水低品质煤干燥脱水提质技术进展. 洁净煤技术. 2024(01): 31-44 .
![]() | |
3. |
宋瑞珍,杨晓阳,张鹏,王宝凤. 低阶煤和生物质水热碳化特性及水热炭功能化改性研究进展. 洁净煤技术. 2024(03): 72-85 .
![]() | |
4. |
郑盼盼,杜玉杰,王永刚,林雄超,汪心想,耿耿,左孟迪. 内在矿物质对褐煤加氢热解过程中氮迁移的影响. 煤炭科学技术. 2024(05): 335-344 .
![]() | |
5. |
宋瑞珍,陈云霄,杨晓阳,王嘉伟,王宝凤,赵瑞东. K_2CO_3活化低阶煤和污泥共水热炭制备多孔炭及其对CO_2和SO_2吸附性能. 洁净煤技术. 2024(07): 47-59 .
![]() | |
6. |
向思羽,张朝晖,邢相栋,折媛,郭胜兰. 烧结烟气脱硫脱硝活性炭的研究进展. 钢铁研究学报. 2023(03): 233-246 .
![]() | |
7. |
朱清耀,戴俊,贠菲菲,翟惠慧,张敏,冯立人. 微波照射后花岗岩动力响应及破碎特征. 采矿与岩层控制工程学报. 2022(01): 60-72 .
![]() | |
8. |
肖卫锋,贺鑫杰. 高炉风口回旋区兰炭燃烧行为的数值模拟. 中国冶金. 2022(05): 86-92 .
![]() | |
9. |
谢炙轩,张雷,郭建英,栗褒,杨志超,张素红,刘生玉. 阳-阴离子表面活性剂协同非极性油对低阶煤浮选的影响. 煤炭科学技术. 2022(09): 267-275 .
![]() | |
10. |
王祥曦,郭柱,李显,胡振中,李致煜,李建,刘景梅,钟梅,罗光前,姚洪. 煤的热溶萃取残渣制备高比表活性炭研究. 工程热物理学报. 2022(10): 2565-2573 .
![]() | |
11. |
曾红久. 低阶煤浮选研究现状与展望. 选煤技术. 2022(05): 7-13 .
![]() | |
12. |
马立柱,黄平峰,庞家刚. 微波干燥机在三氧化二砷干燥中的应用. 有色冶金节能. 2021(02): 44-46+50 .
![]() | |
13. |
脱凯用,刘淑琴,王莉萍,陈钢,马伟平,牛茂斐,刘欢,郭巍. 微波辅助铁催化华夏煤热解及煤焦结构演变特性. 煤炭学报. 2021(S2): 1030-1041 .
![]() |