Citation: | GUO Hongyu,LI Hao,LI Guofu,et al. Control effect of kaolin in lignite on biological methane metabolism process[J]. Coal Science and Technology,2024,52(S2):47−55. DOI: 10.12438/cst.2023-1516 |
Kaolinite is a common mineral in coal, and its influence on the metabolic process of coal biological methane is less concerned. In this study, lignite and kaolin after demineralization were selected to explore the control effect of kaolin on coal bio-gas production through bio-gas production simulation experiment, infrared spectrum analysis, XPS, fluorescence spectrum and metagenomic analysis. The results show that adding a certain proportion of kaolin can effectively promote the production of biological methane. Among them, adding 6% kaolin, the biological gas production increased by 90.4% compared with the raw coal, and excessive kaolin will inhibit the production of biological methane. Kaolin made the macromolecular structure of coal in the fermentation system change more obviously, and aromatic substances were effectively converted into small molecular weight substances. The fermentation system with kaolin addition further oxidized phenolic carbon or ether carbon in coal samples to organic acids, and the relative contents of C—C and C—H decreased by 2.01% and 10.20%, respectively. Soluble organic matter can be effectively degraded and utilized, which is conducive to biogas production. Kaolin promoted the increase of microbial flora species abundance, enhanced the gene abundance of key enzymes in each methanogenic pathway, and promoted the degradation of various complex substances in the fermentation broth and the conversion of methane. The research results provide experimental support for the influence of kaolin in coal on the metabolism of biological methane.
[1] |
周言安,杨洋. “双碳”目标下我国煤矿瓦斯利用技术发展方向[J]. 煤炭技术,2022,41(8):146−149.
ZHOU Yan’an ,YANG Yang. Development direction of coal mine gas utilization technology to realize carbon peak and carbon neutrality in China[J]. Coal Technology,2022,41(8):146−149.
|
[2] |
徐凤银,侯伟,熊先钺,等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(4):669−682. doi: 10.11698/PED.20220856
XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(4):669−682. doi: 10.11698/PED.20220856
|
[3] |
黄中伟,李国富,杨睿月,等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报,2022,47(9):3212−3238.
HUANG Zhongwei,LI Guofu,YANG Ruiyue,et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society,2022,47(9):3212−3238.
|
[4] |
谭波,宋华,司硕,等. 煤炭清洁燃烧技术及工程应用[J]. 煤炭科学技术,2022,50(S2):393−402.
TAN Bo,SONG Hua,SI Shuo,et al. The technology and practice for clean combustion of coal[J]. Coal Science and Technology,2022,50(S2):393−402.
|
[5] |
叶建平,侯淞译,张守仁. “十三五”期间我国煤层气勘探开发进展及下一步勘探方向[J]. 煤田地质与勘探,2022,50(3):15−22. doi: 10.12363/issn.1001-1986.21.12.0738
YE Jianping,HOU Songyi,ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th Five-Year Plan period and the next exploration direction[J]. Coal Geology & Exploration,2022,50(3):15−22. doi: 10.12363/issn.1001-1986.21.12.0738
|
[6] |
苏现波,夏大平,赵伟仲,等. 煤层气生物工程研究进展[J]. 煤炭科学技术,2020,48(6):1−30.
SU Xianbo,XIA Daping,ZHAO Weizhong,et al. Research advances of coalbed gas bioengineering[J]. Coal Science and Technology,2020,48(6):1−30.
|
[7] |
鲍园,常佳宁,刘向荣,等. 煤层气生物工程关键预处理技术及其作用机制评述[J]. 煤田地质与勘探,2022,50(11):103−114. doi: 10.12363/issn.1001-1986.22.04.0243
BAO Yuan,CHANG Jianing,LIU Xiangrong,et al. Key pretreatment technologies for coalbed gas bioengineering and review on their mechanism of action[J]. Coal Geology & Exploration,2022,50(11):103−114. doi: 10.12363/issn.1001-1986.22.04.0243
|
[8] |
苏现波,汪露飞,赵伟仲,等. 超临界CO2参与下煤储层原位微生物甲烷化物理模拟研究[J]. 煤田地质与勘探,2022,50(3):119−126. doi: 10.12363/issn.1001-1986.21.11.0684
SU Xianbo,WANG Lufei,ZHAO Weizhong,et al. Physical simulation of in situ microbial methanation in coal reservoirs with the participation of supercritical CO2[J]. Coal Geology & Exploration,2022,50(3):119−126. doi: 10.12363/issn.1001-1986.21.11.0684
|
[9] |
苏现波,赵伟仲,王乾,等. 煤层气井地联合抽采全过程低负碳减排关键技术研究进展[J]. 煤炭学报,2023,48(1):335−356.
SU Xianbo,ZHAO Weizhong,WANG Qian,et al. Conception of key technologiesfor low-negative carbon emission reduction in the process of coalbed methane development from the CBM well,coal mine and goaf[J]. Journal of China Coal Society,2023,48(1):335−356.
|
[10] |
LI Yang,ZHANG Yuanyuan,XUE Sheng,et al. Actinobacteria may influence biological methane generation in coal seams[J]. Fuel,2023,339:126917. doi: 10.1016/j.fuel.2022.126917
|
[11] |
XIA Daping,HUANG Song,GAO Zhixiang,et al. Effect of different inorganic iron compounds on the biological methanation of CO2 sequestered in coal seams[J]. Renewable Energy,2021,164:948−955. doi: 10.1016/j.renene.2020.09.048
|
[12] |
ZHOU Yinbo,ZHANG Ruilin,TIAN Kunyun,et al. Characteristics of the methanotroph used in coalbed methane emission reduction:Methane oxidation efficiency and coal wettability[J]. Fuel,2023,349:128596. doi: 10.1016/j.fuel.2023.128596
|
[13] |
SMITH H J,SCHWEITZER H D,BARNHART E P,et al. Effect of an algal amendment on the microbial conversion of coal to methane at different sulfate concentrations from the Powder River Basin,USA[J]. International Journal of Coal Geology,2021,248:103860. doi: 10.1016/j.coal.2021.103860
|
[14] |
HU Wenhui,HOU Weiguo,DONG Hailiang,et al. Enhancement of biogenic methane production from subbituminous coal by reduced iron-bearing clay mineral[J]. International Journal of Coal Geology,2021,248:103862. doi: 10.1016/j.coal.2021.103862
|
[15] |
WANG Bo,PENG Yongjun,VINK Sue. Effect of saline water on the flotation of fine and coarse coal particles in the presence of clay minerals[J]. Minerals Engineering,2014,66:145−151.
|
[16] |
牛鑫磊,曹代勇,徐浩,等. 海陆过渡相煤系致密砂岩储层特征及影响因素[J]. 煤炭科学技术,2018,46(4):188−195.
NIU Xinlei,CAO Daiyong,XU Hao,et al. Characteristics and control factors of tight sandstone reservoirs in marine-continental transitional coal measures[J]. Coal Science and Technology,2018,46(4):188−195.
|
[17] |
XU Fei,QIN Shenjun,LI Shenyong,et al. The migration and mineral host changes of lithium during coal combustion:Experimental and thermodynamic calculation study[J]. International Journal of Coal Geology,2023,275:104298. doi: 10.1016/j.coal.2023.104298
|
[18] |
李跃武,吴平霄,李丽萍,等. 高岭土固定GY2B优化其降解性能[J]. 环境工程学报,2015,9(9):4591−4597. doi: 10.12030/j.cjee.20150980
LI Yuewu,WU Pingxiao,LI Liping,et al. Optimizing degradation performance of GY2B fixed by kaolinite[J]. Chinese Journal of Environmental Engineering,2015,9(9):4591−4597. doi: 10.12030/j.cjee.20150980
|
[19] |
李漪,王海林,孙德四. 矿物结构对胶质芽孢杆菌生长代谢及溶硅的影响[J]. 非金属矿,2013,36(2):16−19.
LI Yi,WANG Hailin,SUN Desi. Effects of mineral structure on growth metabolism and silicon-dissolving of bacillus mucilaginosus[J]. Non-Metallic Mines,2013,36(2):16−19.
|
[20] |
CUADROS J. Clay minerals interaction with microorganisms:A review[J]. Clay Minerals,2017,52(2):235−261. doi: 10.1180/claymin.2017.052.2.05
|
[21] |
汪华明. 矿物影响垃圾渗滤液中有机物厌氧分解的实验研究[D]. 合肥:合肥工业大学,2015:27−31.
WANG Huaming. Experimental studies on the effects of minerals on anaerobic degradation of organic matters in landfill leachate[D]. Hefei:Hefei University of Technology,2015:27−31.
|
[22] |
于春梅,张楠,滕海鹏. FTIR和Raman技术在煤结构分析中的应用研究[J]. 光谱学与光谱分析,2021,41(7):2050−2056.
YU Chunmei,ZHANG Nan,TENG Haipeng. Investigation of different structures of coals through FTIR and Raman techniques[J]. Spectroscopy and Spectral Analysis,2021,41(7):2050−2056.
|
[23] |
李霞,曾凡桂,王威,等. 低中煤级煤结构演化的FTIR表征[J]. 煤炭学报,2015,40(12):2900−2908.
LI Xia,ZENG Fangui,WANG Wei,et al. FTIR characterization of structural evolution in low-middle rank coals[J]. Journal of China Coal Society,2015,40(12):2900−2908.
|
[24] |
葛涛,李洋,Wang Meng,等. 高硫肥煤碳结构研究与光谱学表征[J]. 光谱学与光谱分析,2021,41(1):45−51.
GE Tao,LI Yang,WANG Meng,et al. Spectroscopic characterization of carbon structure in high sulfur fat coal[J]. Spectroscopy and Spectral Analysis,2021,41(1):45−51.
|
[25] |
宋晓娜,于涛,张远,等. 利用三维荧光技术分析太湖水体溶解性有机质的分布特征及来源[J]. 环境科学学报,2010,30(11):2321−2331.
SONG Xiaona,YU Tao,ZHANG Yuan,et al. Distribution characterization and source analysis of dissolved organic matters in Taihu Lake using three dimensional fluorescence excitation-emission matrix[J]. Acta Scientiae Circumstantiae,2010,30(11):2321−2331.
|
[26] |
TA D T,LIN C Y,TA T M N,et al. Biohythane production via single-stage fermentation using gel-entrapped anaerobic microorganisms:Effect of hydraulic retention time[J]. Bioresource Technology,2020,317:123986. doi: 10.1016/j.biortech.2020.123986
|
[27] |
FENG Leiyu,YUAN Feiyi,XIE Jing,et al. Sulfadiazine inhibits hydrogen production during sludge anaerobic fermentation by affecting pyruvate decarboxylation[J]. Science of the Total Environment,2022,838:156415. doi: 10.1016/j.scitotenv.2022.156415
|
[28] |
GAO Wenxuan,ZHI Suli,CHANG C C,et al. Different rapid startups for high-solid anaerobic digestion treating pig manure:Metagenomic insights into antibiotic resistance genes fate and microbial metabolic pathway[J]. Environmental Research,2023,231:116038. doi: 10.1016/j.envres.2023.116038
|