Citation: | WANG Xiaodong,ZHANG Yu,LIU Jie,et al. Study on influence of mobile heat source on thermal environment parameters of roadway[J]. Coal Science and Technology,2024,52(S2):88−100. DOI: 10.12438/cst.2023-1505 |
The heat generated by the moving heat source in the running process of the scraper will be transferred to the driving roadway, and then affect the distribution of air temperature and humidity in the roadway. Field test was carried out in a mining roadway in Yunnan Province. Based on the field measured data, a moving heat source geometric model consistent with the actual production equipment was established, and a Realizable k-ɛ model based on component transport model and natural convection heat transfer type was established. The vertical, vertical and transverse distribution of air temperature, humidity and enthalpy under the influence of moving heat source is simulated by using the overlapping grid method and the moving grid method, and the accuracy of the simulation is verified by field measurement data. The results show that the moving heat source affects the structural state of the macroscopic temperature field in the roadway; The air temperature and humidity near the working face increase with the distance from the working face. The peak values of air temperature and relative humidity measured 12 m away from the working face are 32.35 ℃ and 92.46%; The enthalpy of air flow conforms to the regular probability distribution, and the probability density distribution curve of enthalpy value coincides with the standard normal distribution curve, indicating that the enthalpy of air flow in the operating environment of the moving heat source conforms to the normal distribution characteristics. High enthalpy area appeared in the middle and near the wall of the heat source operating area, with a peak value of 89.80 (kJ/kg air); The difference between mean and median array of air flow enthalpy values under different monitoring groups is less than 2%.
[1] |
徐宇,李孜军,贾敏涛,等. 深部矿井热害治理协同地热能开采构想及方法分析[J]. 中国有色金属学报,2022,32(5):1515−1527.
XU Yu,LI Zijun,JIA Mintao,et al. Conceptualization and method for synergetic mining of geothermal energy as solution to heat hazard control in deep mines[J]. The Chinese Journal of Nonferrous Metals,2022,32(5):1515−1527.
|
[2] |
MAURYA T,KARENA K,VARDHAN H,et al. Potential sources of heat in underground mines–A review[J]. Procedia Earth and Planetary Science,2015,11:463−468. doi: 10.1016/j.proeps.2015.06.046
|
[3] |
MILLAR D,TRAPANI K,ROMERO A. Deep mine cooling,a case for northern Ontario:Part I[J]. International Journal of Mining Science and Technology,2016,26(4):721−727. doi: 10.1016/j.ijmst.2016.05.026
|
[4] |
WANG Kaipeng,LI Qimin,WANG Jian,et al. Thermodynamic characteristics of deep space:Hot hazard control case study in 1010-m-deep mine[J]. Case Studies in Thermal Engineering,2021,28:101656. doi: 10.1016/j.csite.2021.101656
|
[5] |
XU Yu,LI Zijun,LI Gang,et al. A thermal environment prediction method for a mine ventilation roadway based on a numerical method:A case study[J]. Case Studies in Thermal Engineering,2023,42:102733. doi: 10.1016/j.csite.2023.102733
|
[6] |
周西华,王继仁,梁栋. 采煤机对回采工作面风流温度场影响[J]. 辽宁工程技术大学学报,2003,22(4):514−516.
ZHOU Xihua,WANG Jiren,LIANG Dong. Effect of coal mining madchines on of airflow and temperature field in the mining face[J]. Journal of Liaoning Technical University,2003,22(4):514−516.
|
[7] |
江凌枝. 高温矿井回采工作面热环境与数值模拟研究[D]. 焦作:河南理工大学,2012.
JIANG Lingzhi. Thermodynamic Environment and Numerical Study in Stoping Face of High Temperature Mine[D]. Jiaozuo:Henan Polytechnic University,2012.
|
[8] |
屈永良,辛嵩,陈兴波,等. 矿井热源对局部通风系统的影响及其处理对策[J]. 煤矿安全,2016,47(1):163−166.
QU Yongliang,XIN Song,CHEN Xingbo,et al. Influence of mine heat source on local ventilation system and its countermeasures[J]. Safety in Coal Mines,2016,47(1):163−166.
|
[9] |
赖鑫琼,吴柯杉,张一夫,等. 井下移动热源对巷道局部风流温度影响规律研究[J]. 中国安全生产科学技术,2018,14(9):100−104.
LAI Xinqiong,WU Keshan,ZHANG Yifu,et al. Study on influence of downhole moving heat source on local airflow temperature of roadway[J]. Journal of Safety Science and Technology,2018,14(9):100−104.
|
[10] |
吴建松,付明,童兴,等. 高温高湿矿井作业人员热应激评价[J]. 煤炭科学技术,2015,43(9):30−36.
WU Jiansong,FU Ming,TONG Xing,et al. Evaluation on heat strain of mine worker in high temperature and high humidity mine[J]. Coal Science and Technology,2015,43(9):30−36.
|
[11] |
郭平业,秦飞. 张双楼煤矿深井热害控制及其资源化利用技术应用[J]. 煤炭学报,2013,38(S2):393−398.
GUO Pingye,QIN Fei. Preventive measures against heat hazard and its utilization in Zhangshuanglou Coal Mine[J]. Journal of China Coal Society,2013,38(S2):393−398.
|
[12] |
张育玮,邹声华,李永存. 高温矿井热源对风流稳定性影响的分析[J]. 中国安全生产科学技术,2015,11(8):46−51.
ZHANG Yuwei,ZOU Shenghua,LI Yongcun. Analysis on influence to airflow stability by heat source in high temperature mine[J]. Journal of Safety Science and Technology,2015,11(8):46−51.
|
[13] |
周闯,刘剑,耿萌,等. 矿井通风热阻力数值模拟研究[J]. 中国安全生产科学技术,2019,15(10):25−31.
ZHOU Chuang,LIU Jian,GENG Meng,et al. Study on numerical simulation of thermal resistance in mine ventilation[J]. Journal of Safety Science and Technology,2019,15(10):25−31.
|
[14] |
高祥骙,袁艳平,余南阳,等. 矿井避难硐室热环境研究综述[J]. 煤炭科学技术,2014,42(S1):107−113,116.
GAO Xiangkui,YUAN Yanping,YU Nanyang,et al. Review of thermal environment of mine refuge chamber[J]. Coal Science and Technology,2014,42(S1):107−113,116.
|
[15] |
张亚平,王美,郝改红. 矿井降温除湿系统的热力学分析[J]. 煤炭技术,2016,35(10):146−148.
ZHANG Yaping,WANG Mei,HAO Gaihong. Thermomechanical analysis of system used to cooling and dehumidity in mine[J]. Coal Technology,2016,35(10):146−148.
|
[16] |
张小康,何富连,马恒. 矿井通风系统环境温度实时计算与应用[J]. 煤炭学报,2012,37(5):863−867.
ZHANG Xiaokang,HE Fulian,MA Heng. Real-time calculation and application of mine ventilation system environmental temperature[J]. Journal of China Coal Society,2012,37(5):863−867.
|
[17] |
吴强,秦跃平,翟明华,等. 掘进巷道双风筒降温措施的研究[J]. 煤炭学报,2002,27(5):499−502. doi: 10.3321/j.issn:0253-9993.2002.05.011
WU Qiang,QIN Yueping,ZHAI Minghua,et al. Study on measure of cooling air in driving road with two air pipes[J]. Journal of China Coal Society,2002,27(5):499−502. doi: 10.3321/j.issn:0253-9993.2002.05.011
|
[18] |
姬建虎. 掘进工作面传热特性及热害治理研究[D]. 重庆:重庆大学,2014.
JI Jianhu. Study on the Heat Transfer and Heat Harm control of driving face In Deep Mine[D]. Chongqing:Chongqing University,2014.
|
[19] |
吴学慧,孙树欣,陈凡,等. 风流与湿润围岩的热-质交换特性及其影响因素研究[J]. 煤炭科学技术,2018,46(2):187−192.
WU Xuehui,SUN Shuxin,CHEN Fan,et al. Research on mass and heat transfer characteristics and its impact factors between air flow and wet surrounding rock[J]. Coal Science and Technology,2018,46(2):187−192.
|
[20] |
杨威. 基于围岩散热的巷道风流温湿度参数变化规律研究[D]. 湘潭:湖南科技大学,2015.
YANG Wei. Study on change law of airflow temperature and humidiy base on strata heat relaese [D]. Xiangtan:Hunan University of Science and Technology,2015.
|
[21] |
高建良,徐文,张学博. 围岩散热风流温度、湿度计算时水分蒸发的处理[J]. 煤炭学报,2010,35(6):951−955.
GAO Jianliang,XU Wen,ZHANG Xuebo. Treatment of water evaporation during calculation of temperature and humidity of airflow caused by heat release from surrounding rock[J]. Journal of China Coal Society,2010,35(6):951−955.
|
[22] |
李宗翔,刘江,王天明. 井巷除湿降温风流温度分布模型计算研究[J]. 矿业安全与环保,2019,46(1):1−4. doi: 10.3969/j.issn.1008-4495.2019.01.001
LI Zongxiang,LIU Jiang,WANG Tianming. Calculation and research on the temperature distribution model of dehumidification and cooling airflow in roadway[J]. Mining Safety & Environmental Protection,2019,46(1):1−4. doi: 10.3969/j.issn.1008-4495.2019.01.001
|
[23] |
李宗翔,王天明,张明乾,等. 矿井巷道淋湿蒸发换热系数构建及风流温度计算[J]. 煤炭学报,2017,42(12):3176−3181.
LI Zongxiang,WANG Tianming,ZHANG Mingqian,et al. Construction of air flow heat transfer coefficient and calculation of airflow temperature in mine wet roadway[J]. Journal of China Coal Society,2017,42(12):3176−3181.
|
[24] |
王靖超. 高温裂隙水作用下巷道风流温湿度场变化规律实验研究[D]. 徐州:中国矿业大学,2019.
WANG Jingchao. Experimental study on variation law of airflow temperature and moisture field of roadway under the action of high temperature fracture water[D]. Xuzhou:China University of Mining and Technology,2019.
|
[25] |
余尔栋,邹钺. 高温高湿环境下人体热应激实验研究[J]. 建筑热能通风空调,2019,38(11):43−48. doi: 10.3969/j.issn.1003-0344.2019.11.011
YU Erdong,ZOU Yue. Experimental study of human body heat stress in high temperature and humidity environment[J]. Building Energy & Environment,2019,38(11):43−48. doi: 10.3969/j.issn.1003-0344.2019.11.011
|
[1] | SI Yujie, XIAO Taoli, YUAN Hao, SHE Haicheng, ZHAO Yunfeng. Study on triaxial mechanical behavior and energy evolution of composite rock with coplanar double fractures[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(12): 71-83. DOI: 10.12438/cst.2023-1566 |
[2] | ZHOU Wendong, CUI Yanwei, WANG Xiaoran, CHEN Li, XU Ke, REN Gehui, WANG Hao, SI Leilei. Characteristics of seismic acoustic emission of loaded rock containing pre-existing cracks based on the discrete element simulation[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(10): 54-62. DOI: 10.13199/j.cnki.cst.2023-0208 |
[3] | LI Bo, LIU Bei, ZHANG Peng, XIA Rui, WANG Xuewen, ZHAO Tingting, FENG Yuntian. A two-scale coarse-grained discrete element methodand experimental verification of bulk coal[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(3): 225-235. DOI: 10.12438/cst.2023-1065 |
[4] | WANG Haiyang, LI Jinbang, ZHENG Shiyue, ZHOU Yanmin, JIANG Wenwei. Simulation on mechanical and failure characteristics of sandstone with elliptical hole under tension-shear effect[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(8): 86-96. DOI: 10.13199/j.cnki.cst.2022-0656 |
[5] | ZHANG Dongdong, ZHI Aolong, LI Zhen, ZHZNG Zhenguo, LI Peng, QIN Qizhi. Study of structural effect on mechanical properties and failure characters of layered rocks[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(4): 124-131. |
[6] | XU Yongxiang, HE Zhenjiang, ZHENG Xingbo, ZHOU Changtai. Study on effect of fracture network on mechanical properties of rock specimens in uniaxial compression[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(7): 31-37. |
[7] | YIN Xinwei, HU Yuelong, YANG Xuepeng, ZHANG Zhuo, LONG Lianchun. Research on discrete element method simulation of crushing force for double-toothed roller crusher[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(6). |
[8] | TIAN Zhen, ZHAO Lijuan, ZHOU Wenchao, MA Lianwei, LE Thuduong. Application of discrete element technology to study on coal loading performances of spiral cutting drum[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (8). |
[9] | SUN Zhengcai, LIU Xiangjun, LIANG Lixi, XIONG Jian. Analysis on impact factors of borehole wall stability of coalbed methane well[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (4). |
[10] | Application of Discrete Element Simulation Technology to Belt Conveyor[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (3). |
1. |
徐宁, 耿在明, 陈致远, 杨杰, 成传诗, 陈伟东, 何强锋, 邓键. 基于深度迁移学习网络的水电机组故障诊断方法. 水利水电技术(中英文). 2025(06)
![]() |