LIU Lang,FANG Zhiyu,WANG Shuangming,et al. Theoretical basis and technical conception of backfill carbon fixation in coal mine[J]. Coal Science and Technology,2024,52(2):292−308
. DOI: 10.12438/cst.2023-1485Citation: |
LIU Lang,FANG Zhiyu,WANG Shuangming,et al. Theoretical basis and technical conception of backfill carbon fixation in coal mine[J]. Coal Science and Technology,2024,52(2):292−308 . DOI: 10.12438/cst.2023-1485 |
Under the national “dual carbon” goal, how to reduce the carbon emissions of the coal industry and achieve carbon storage has become an urgent problem to be solved. The coal industry is the producer of high carbon fossil energy and the main carbon emission source provider. In the process of production and consumption, the accumulation of bulk solid waste, the formation of large goaf and a large amount of CO2 emissions are the bottlenecks that restrict the sustainable development and utilization and the green and healthy development of the coal industry. In order to solve the problem of carbon dioxide storage and mine waste consumption, the bulk solid waste disposal, high-value solid waste utilization, CO2 storage and goaf utilization were organically combined, the concept of carbon dioxide backfill was put forward, and three types of dioxide backfill were defined from the perspective of carbon sink capacity assessment. ① The basic theories involved in the transportation process of CO2 filling slurry and mineralization reaction process are analyzed. The mathematical equations for each process and calculation formulas for carbon sequestration amount are provided. The influence of factors such as temperature and humidity on the mineralization reaction mechanism, carbon sequestration amount, and strength of the backfill body are pointed out. ② The carbonation technological approaches, CO2 sequestration capacity of major alkaline industrial solid wastes and enhancing measures of CO2 mineralization are summarized. On this premise, two types of CO2 backfill materials preparation technique based on direct carbonationand or indirect carbonationand are presented, which can fulfill the criterion of mine backfill in fluidity, solidification characteristics and strength. ③ To solve the problem of decomposed CO2 escaping during CO2 backfill, two technical paths of strip roadway paste backfilling and intermittent backfilling behind packed hydraulic support have been proposed. The former sequesters decomposed CO2 by constructing backfilling bodies with multiple through holes in the weak backfilling strip, while the latter uses packed hydraulic support and chain self-filling baffling to construct backfilling strips in longwall goaf to control roof caving and form a CO2 physicochemical storage space. ④ In order to evaluate the carbon balance effect of CO2 backfill, the calculation boundary of carbon footprint and carbon sequestration in CO2 backfill was defined according to the life cycle method, including the stages of raw material mining, transportation, processing, injection, solidification, etc. Then, the carbon footprint and carbon sequestration in the CO2 backfill process were sorted out, and factors such as the source, dosage, loss, and conversion of CO2 were considered. Next, the calculation methods of carbon footprint and carbon sequestration in the processes of raw material transportation, filling slurry preparation, underground injection and filling were given. The research results are expected to reduce the energy consumption and cost of CO2 storage, and have far-reaching significance for green coal mining and sustainable development and utilization.
[1] |
桑树勋,刘世奇,朱前林,等. CO2地质封存潜力与能源资源协同的技术基础研究进展[J]. 煤炭学报,2023,48(7):2700−2716.
SANHG Shuxun,LIU Shiqi,ZHU Qianlin,et al. Research progress on technical basis of synergy between CO2 geological storage potential and energy resources[J]. Journal of China Coal Society,2023,48(7):2700−2716.
|
[2] |
谢和平,刘 涛,吴一凡,等. CO2的能源化利用技术进展与展望[J]. 工程科学与技术,2022,54(1):145−156.
XIE Heping,LIU Tao,WU Yifan,et al. Progress and prospect of CO2 energy utilization technology[J]. Advanced Engineering Sciences,2022,54(1):145−156.
|
[3] |
王双明,刘浪,赵玉娇,等. “双碳”目标下赋煤区新能源开发:未来煤矿转型升级新路径[J]. 煤炭科学技术,2023,51(1):59−79.
WANG Shuangming,LIU Lang,ZHAO Yujiao,et al. New energy exploitation in coal-endowed areas under the target of “double carbon”: a new path for transformation and upgrading of coal mines in the future[J]. Coal Science and Technology,2023,51(1):59−79.
|
[4] |
李 强,艾 锋,王 玺,等. 煤基固废协同矿山土壤生态修复的理论解析与实践探索:以陕西榆林市为例[J]. 西北地质,2023,56(3):70−77.
LI Qiang,AI Feng,WANG Xi,et al. Theoretical analysis and practical exploration on ecological restoration of mines with multi-source solid wastes:example from Yulin City,Shaanxi Province[J]. Northwestern Geology,2023,56(3):70−77.
|
[5] |
张吉雄,张 强,周 楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181.
ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.
|
[6] |
杨 科,赵新元,何 祥,等. 多源煤基固废绿色充填基础理论与技术体系[J]. 煤炭学报,2022,47(12):4201−4216.
YANG Ke,ZHAO Xinyuan,HE Xiang,et al. Basic theory and key technology of multi-source cola based solid waste for green backfilling[J]. Journal of China Coal Society,2022,47(12):4201−4216.
|
[7] |
柳晓娟,侯华丽,武 强,等. 绿色矿山经济效益核算理论与实证:以矿井充填开采技术为例[J]. 中国矿业,2022,31(9):61−67. doi: 10.12075/j.issn.1004-4051.2022.09.022
LIU Xiaojuan,HOU Huali,WU Qiang,et al. Theory and empirical study on green mine economic benefit account taking the filling mining technology of coal mine as an example[J]. China Mining Magazine,2022,31(9):61−67. doi: 10.12075/j.issn.1004-4051.2022.09.022
|
[8] |
YIN Shenghua,YAN Zepeng,CHEN Xun,et al. Active roof-contact:The future development of cemented paste backfill[J]. Construction and Building Materials,2023,370:130657.
|
[9] |
FENG Yabin,QI Wenyue,ZHAO Qingxin,et al. Synthesis and characterization of cemented paste backfill:Reuse of multiple solid wastes[J]. Journal of Cleaner Production,2023,383:135376.
|
[10] |
刘 浪,王双明,朱梦博,等. 基于功能性充填的CO2储库构筑与封存方法探索[J]. 煤炭学报,2022,47(3):1072−1086.
LIU Lang,WANG Shuangming,ZHU Mengbo,et al. CO2 storage-cavern construction and storage method based on functional backfill[J]. Journal of China Coal Society,2022,47(3):1072−1086.
|
[11] |
段圆圆. 煤基固废协同利用制备采空区充填膏体试验研究[D]. 包头:内蒙古科技大学,2021.
DUAN Yuanyuan. Experimental study on preparation of goaf filling paste by synergistic utilization of coal-based solid waste[D]. Baotou:Inner Mongolia University of Science & Technology,2021.
|
[12] |
LIU Shiqi,LIU Tong,ZHENG Sijian,et al. Evaluation of carbon dioxide geological sequestration potential in coal mining area[J]. International Journal of Greenhouse Gas Control,2023,122:103814.
|
[13] |
CHEN Jiangzhi,MEI Shenghua. Gas-saturated carbon dioxide hydrates above sub-seabed carbon sequestration site and the formation of self-sealing cap[J]. Gas Science and Engineering,2023,111:204913.
|
[14] |
CHEN Jing,XING Yi,WANG Yan,et al. Application of iron and steel slags in mitigating greenhouse gas emissions:A review[J]. Science of The Total Environment,2022,844:157041.
|
[15] |
方治余. 高温深井下含冰粒充填料浆流动沉降规律研究[D]. 西安:西安科技大学,2020.
FANG Zhiyu. Investigation on the flow and settlement law of ice-containing cemented paste backfill slurry in high temperature and deep well[D]. Xi’an:Xian University of Science and Technology,2020.
|
[16] |
王 乐. 污水处理构筑物内多相流数值模拟及机理研究[D]. 成都:西南交通大学,2018.
WANG Le. Numerical simulation and mechanism study of multiphase fluid dynamics in sewage treatment structures[D]. Chengdu:Southwest Jiaotong University,2018.
|
[17] |
刘志双. 充填料浆流变特性及其输送管道磨损研究[D]. 北京:中国矿业大学(北京),2018.
LIU Zhishuang. Study on rheological properties of filling slurry and wear of conveying pipeline[D]. Beijing:China University of mining and technology-Beijing,2018.
|
[18] |
Fluent 14.5. Theory Giuide [M]. Canonsburg,PA:Ansys Inc.,2012.
|
[19] |
王 鹏,CHEN Shen’en,陈占清,等. 二氧化碳在多孔水泥充填材料中的扩散与反应动力学响应[J]. 采矿与安全工程学报,2019,36(2):381−387.
WANG Peng,CHEN Shen’en,CHEN Zhanqing. Dynamic response of carbon dioxide diffusion and reaction in porous cementitious back-filling material[J]. Journal of Mining & Safety Engineering,2019,36(2):381−387.
|
[20] |
CHEN T,GAO X,QIN L. Mathematical modeling of accelerated carbonation curing of portland cement paste at early age[J]. Cement and Concrete Research,2019,120:187−197. doi: 10.1016/j.cemconres.2019.03.025
|
[21] |
KASHEF–HAGHIGHI S,SHAO Y,GHOSHAL S. Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing[J]. Cement and Concrete Research,2015,67:1−10. doi: 10.1016/j.cemconres.2014.07.020
|
[22] |
陈闵敏,孙玉柱,宋兴福,等. 氢氧化镁碳化过程研究[J]. 华东理工大学学报(自然科学版),2022,48(5):600−608.
CHEN Minmin,SUN Yuzhu,SONG Xingfu,et al. Carbonization process of magnesium hydroxide[J]. Journal of East China University of Science and Technology,2022,48(5):600−608.
|
[23] |
ASHRAF W. Carbonation of cement-based materials:challenges and opportunities[J]. Construction & Building Materials,2016,120:558−570.
|
[24] |
ZHANG D,GHOULEH Z,SHAO Y. Review on carbonation curing of cement-based materials[J]. Journal of CO2 Utilization,2017,21:119−131. doi: 10.1016/j.jcou.2017.07.003
|
[25] |
MO L,ZHANG F,DENG M,et al. Effectiveness of using CO2 pressure to enhance the carbonation of Porland cement-fly ash-MgO mortars[J]. Cement and Concrete Composites,2016,70:78−85. doi: 10.1016/j.cemconcomp.2016.03.013
|
[26] |
SHI C,WU Y. Studies on some factors affecting CO2 curing of lightweight concrete products[J]. Resources Conservation & Recycling,2008,52(8/9):1087−1092.
|
[27] |
EL–HASSAN H,SHAO Y,GHOULEH Z. Effect of initial curing on carbonation of lightweight concrete masonry units[J]. ACI Materials Journal,2013,110(4):441−450.
|
[28] |
UNLUER C,AL–TABBAA A. Enhancing the carbonation of MgO cement porous blocks through improved curing conditions[J]. Cement and Concrete Research,2014,59:55−65. doi: 10.1016/j.cemconres.2014.02.005
|
[29] |
NIELSEN P,BOONE MA,HORCKMANS L,et al. Accelerated carbonation of steel slag monoliths at low CO2 pressure–microstructure and strength development[J]. Journal of CO2 Utilization,2020,36:124−134. doi: 10.1016/j.jcou.2019.10.022
|
[30] |
SEIFRITZ W. CO2 disposal by means of silicates[J]. Nature,1990,345:486
|
[31] |
LACKNER KS,WENDT CH,BUTT DP,et al. Carbon dioxide disposal in carbonate minerals[J]. Energy,1995,20(11):1153−1170. doi: 10.1016/0360-5442(95)00071-N
|
[32] |
王宗华,张军营,徐 俊,等. CO2矿物碳酸化隔离的理论研究[J]. 工程热物理学报,2008,29(6):1063−1068.
WANG Zonghua,ZHANG Junying,XU Jun,et al. A theoretical study on mineral carbonation for CO2 sequestration[J]. Journal of Engineering Thermophy-sics,2008,29(6):1063−1068.
|
[33] |
RENFORTH P,Washbourne CL,TAYLDER J,et al. Silicate production and availability for mineral carbonation[J]. Environ Sci Technol,2011,45(6):2035−2041. doi: 10.1021/es103241w
|
[34] |
张兵兵,王慧敏,曾尚红,等. 二氧化碳矿物封存技术现状及展望[J]. 化工进展,2012,31(9):2075−2083.
ZHANG bingbing,WANG Huimin,ZENG Shanghong,et al. Current status and outlook of carbon dioxide mineral carbonation technologies[J]. Chemical Industryand Engineering Progress,2012,31(9):2075−2083.
|
[35] |
DAVAL D,SISSMANN O,MENGUY N,et al. Influence of amorphous silica layer formation on the dissolution rate of olivine at 90°C and elevated pCO2[J]. Chemical Geology,2011,284(1-2):193−209. doi: 10.1016/j.chemgeo.2011.02.021
|
[36] |
HEMMATI A,SHAYEGAN J,BU J,et al. Process optimization for mineral carbonation in aqueous phase[J]. International Journal of Mineral Processing,2014,130:20−27. doi: 10.1016/j.minpro.2014.05.007
|
[37] |
HEMMATI A,SHAYEGAN J,SHARRATT P,et al. Solid products characterization in a multi-step mineralization process[J]. Chemical Engineering Journal,2014,252:210−219. doi: 10.1016/j.cej.2014.04.112
|
[38] |
任京伟,王 涛,陈雨雷,等. CO2矿化研究现状及应用潜力[J]. 地球科学,2020,45(7):2413−2425.
REN Jingwei,WANG Tao,CHEN Yulei,et al. Research status and application potential of CO2 mineralization[J]. Earth Science,2020,45(7):2413−2425.
|
[39] |
RAHMANIHANZAKI M,HEMMATI A. A review of mineral carbonation by alkaline solidwaste[J]. International Journal of Greenhouse Gas Control,2022,121.
|
[40] |
冉武平,张永太,艾贤臣,等. 工业固体废弃物矿化封存CO2研究综述[J]. 科学技术与工程,2023,32(16):6718−6727.
RAN Wuping,ZHANG Yongtai,AI Xianchen,et al. Review of CO2 sequestration research in industrial solid waste mineralization[J]. Science Technology and Engineering,2023,32(16):6718−6727.
|
[41] |
王秋华,吴嘉帅,张卫风. 碱性工业固废矿化封存二氧化碳研究进展[J]. 化工进展,2023,42(3):1572−1582.
WANG Qiuhua,WU Jiashuai,ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration[J]. Chemical Industry and Engineering Progress,2023,42(3):1572−1582.
|
[42] |
张亚朋,崔龙鹏,刘艳芳,等. 3 种典型工业固废的CO2 矿化封存性能[J]. 环境工程学报,2021,15(7):2344−2355.
ZHANG Yapeng,CUI Longpeng,LIU Yanfang,et al. Comparison of three typical industrial solid wastes on the performance of CO2 mineralization and sequestration[J]. Chinese Journal of Environmental Engineering,2021,15(7):2344−2355.
|
[43] |
王晓龙,刘 蓉,纪 龙,等. 利用粉煤灰与可循环碳酸盐直接捕集固定电厂烟气中二氧化碳的液相矿化法[J]. 中国电机工程学报,2018,38(19):5787−5794.
WANG Xiaolong,LIU Rong,JI Long,et al. A new direct aqueous mineralization process using fly ash and recyclable carbonate salts to capture and storage CO2 from flue-gas[J]. Proceedings of the CSEE,2018,38(19):5787−5794.
|
[44] |
蔡洁莹,李向东,李海红,等. 电厂粉煤灰固定二氧化碳实验研究[J]. 煤炭转化,2019,42(1):87−94.
CAI Jieying,LI Xiangdong,LI Haihong et al. Experimental study on solidification of carbon dioxide by coal fly ash in power plant[J]. Coal Conversion,2019,42(1):87−94.
|
[45] |
武 鸽,刘艳芳,崔龙鹏,等. 典型工业固体废物碳酸化反应性能的比较[J]. 石油学报(石油加工),2020,36(1):169−178. doi: 10.3969/j.issn.1001-8719.2020.01.021
WU Ge,LIU Yanfang,CUI Longpeng,et al. Comparison of the carbonation reaction properties of typical industrial solid wastes[J]. Acta Petrolei Sinica(Petroleum Processing Section),2020,36(1):169−178. doi: 10.3969/j.issn.1001-8719.2020.01.021
|
[46] |
MAZZELLA A,ERRICO M,SPIGA D. CO2 uptake capacity of coal fly ash:Influence of pressure and temperature on direct gas-solid carbonation[J]. Journal of Environmental Chemical Engineering,2016,4(4):4120−4128. doi: 10.1016/j.jece.2016.09.020
|
[47] |
YADAV S,MEHRA A. Experimental study of dissolution of minerals and CO2 sequestration in steel slag[J]. Waste Management,2017,64:348−357. doi: 10.1016/j.wasman.2017.03.032
|
[48] |
CHENG C,HUANG W,XU H,et al. CO2 sequestration and CaCO3 recovery with steel slag by a novel two-step leaching and carbonation method[J]. Science of The Total Environment,2023,891.
|
[49] |
YE J,LIU S,ZHAO Y,et al. Development of ultrafine mineral admixture from magnesium slag and sequestration of CO2[J]. Buildings,2023,13(1):204.
|
[50] |
DING W,CHEN Q,SUN H,et al. Modified mineral carbonation of phosphogypsum for CO2 sequestration[J]. Journal of CO2 Utilization,2019,34:507−515. doi: 10.1016/j.jcou.2019.08.002
|
[51] |
王中辉,苏 胜,尹子骏,等. CO2矿化及吸收–矿化一体化(IAM)方法研究进展[J]. 化工进展,2021,40(4):2318−2327.
WANG Zhonghui,SU Sheng,YIN Zijun,et al. Research progress of CO2 mineralization and integrated absorption-mineralization(IAM) method[J]. Chemical Industry And Engineering Progress,2021,40(4):2318−2327.
|
[52] |
TEIR S,REVITZER H,ELONEVA S,et al. Dissolution of natural serpentinite in mineral and organic acids[J]. International Journal of Mineral Processing,2007,83(1/2):36−46. doi: 10.1016/j.minpro.2007.04.001
|
[53] |
ALEXANDER G,Mercedes Maroto-VALER M,Gafarova-AKSOY P. Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation[J]. Fuel,2007,86(1/2):273−281. doi: 10.1016/j.fuel.2006.04.034
|
[54] |
KAKIZAWA M,YAMASAKI A,YANAGISAWA Y. A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid[J]. Energy,2001,26(4):341−354. doi: 10.1016/S0360-5442(01)00005-6
|
[55] |
KUSAKA E,SUEHIRO R,IWAMIZU Y. Kinetics of calcium leaching from particulate steelmaking slag in acetic acid solution[J]. ISIJ International,2022,62(1):263−274. doi: 10.2355/isijinternational.ISIJINT-2021-121
|
[56] |
MIAO E,DU Y,ZHENG X,et al. CO2 sequestration by direct mineral carbonation of municipal solid waste incinerator fly ash in ammonium salt solution:Performance evaluation and reaction kinetics[J]. Separation and Purification Technology,2023,309:123103. doi: 10.1016/j.seppur.2023.123103
|
[57] |
O’Connor WK,Dahlin DC,Nilsen DN,et al. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid[C]. Proceedings of the 25th International Technical Conference on Coal Utilization & FUEL Systems. Clearwater,Florida,UNITED States,2000.
|
[58] |
PARK A HA,FAN L S. CO2 mineral sequestration:physically activated dissolution of serpentine and pH swing process[J]. Chemical Engineering Science,2004,59(22/23):5241−5247. doi: 10.1016/j.ces.2004.09.008
|
[59] |
SOONG Y,Goodman AL,McCarthy-Jones JR,et al. Experimental and simulation studies on mineral trapping of CO2 with brine[J]. Energy Conversion and Management,2004,45(11/12):1845−1859. doi: 10.1016/j.enconman.2003.09.029
|
[60] |
TEIR S,KUUSIK R,Fogelholm C–J,et al. Production of magnesium carbonates from serpentinite for long-term storage of CO2[J]. International Journal of Mineral Processing,2007,85(1/3):1−15. doi: 10.1016/j.minpro.2007.08.007
|
[61] |
SOONG Y,Fauth DL,Howard BH,et al. CO2 sequestration with brine solution and fly ashes[J]. Energy Conversion and Management,2006,47(13/14):1676−1685. doi: 10.1016/j.enconman.2005.10.021
|
[62] |
纪 龙. 利用粉煤灰矿化封存二氧化碳的研究[D]. 北京:中国矿业大学(北京),2018.
JI Long. Carbon dioxide sequestration by mineralisation of coal fly ash[D]. Beijing:China University of Mining & Technology−Beijing,2018.
|
[63] |
朱梦博,刘 浪,王双明,等. 短–长壁工作面充填无煤柱开采方法研究[J]. 采矿与安全工程学报,2022,39(6):1116−1124.
ZHU Mengbo,LIU Lang,WANG Shuangming,et al. Short and long walls backfilling pillarless coal mining method[J]. Journal of Mining & Safety Engineering,2022,39(6):1116−1124.
|
[64] |
ZHU Mengbo,XIE Geng,LIU Lang,et al. Strengthening mechanism of granulated blast-furnace slag on the uniaxial compressive strength of modified magnesium slag-based cemented backfilling material[J]. Process Safety and Environmental Protection,2023,174:722−733. doi: 10.1016/j.psep.2023.04.031
|
[65] |
ZHANG Yongnian,PAN Jinghu,ZHANG Yongjiao,et al. Spatial-temporal characteristics and decoupling effects of China's carbon footprint based on multi-source data[J]. Journal of Geographical Sciences,2021,31(3):327−349. doi: 10.1007/s11442-021-1839-7
|
[66] |
董 雪,柯水发. 国内外碳足迹计算方法,评估标准及研究进展[C]// 绿色经济与林业发展论——第六届中国林业技术经济理论与实践论坛论文集,2012:1–9.
DONG Xue,KE Shuifa. Methods,assessment standards and research progress of carbon footprint at China and abroad[C]// Green Economy And Forestry Development Forum – Proceedings of the Sixth China Forestry Technology and Economic Theory and Practice Forum,2012:1–9.
|
[67] |
杨博宇,白中科. 碳中和背景下煤矿区土地生态系统碳源/汇研究进展及其消纳对策[J]. 中国矿业,2021,30(5):1−9. doi: 10.12075/j.issn.1004-4051.2021.05.028
YANG Boyu,BAI Zhongke. Research advances and emission reduction measures in carbon source and sink of land ecosystems in coal mining area under the carbon neutrality[J]. China Mining Magazine,2021,30(5):1−9. doi: 10.12075/j.issn.1004-4051.2021.05.028
|
[68] |
中华人民共和国生态环境部办公厅. 关于做好2023—2025年发电行业企业温室气体排放报告管理有关工作的通知[EB/OL]. [2023–02–07]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/t20230207_1015569.html.
|
[69] |
国家统计局能源统计司. 中国能源统计年鉴2022[M]. 北京:中国统计出版社,2023.
|
[70] |
彭松水,陆诗建. CCS–EOR项目碳净消纳量方法学模型[J]. 油气田地面工程,2015,34(4):9−11.
PENG Songshui,LU Shijian. Methodology model for carbon net consumption of CCS–EOR project[J]. Oil-Gas Field Surface Engineering,2015,34(4):9−11.
|
[71] |
顾清华,张 媛,卢才武,等. 低碳限制下综合成本最小的露天矿卡车运输优化研究[J]. 金属矿山,2019(8):157−161.
GU Qinghua,ZHANG Yuan,LU Caiwu,et al. Truck transportation optimization research under the constraints of low carbon with the lowest comprehensive cost in open-pit mine[J]. Metal Mine,2019(8):157−161.
|
[72] |
徐 丽,何念鹏,于贵瑞,2010s中国陆地生态系统碳密度数据集[J]. 中国科学数据(中英文网络版),2019,4(1):90–96.
XU Li,HE Nianpeng,YU Guirui. A dataset of carbon density in Chinese terrestrial ecosystems (2010s)[J]. Chinese scientific data,2019,4(1):90–96.
|
[73] |
FANG Zhiyu,LIU Lang,ZHANG Xiaoyan,et al. Carbonation curing of modified magnesium-coal based solid waste backfill material for CO2 sequestration[J]. Process Safety and Environmental Protection,2023. https://doi.org/10.1016/j.psep.2023.10.049.
|