Advance Search
SHI Yanqiang,SHI Yakun. Geological history plants dominated the net accumulation of coal[J]. Coal Science and Technology,2024,52(12):224−238. DOI: 10.12438/cst.2023-1461
Citation: SHI Yanqiang,SHI Yakun. Geological history plants dominated the net accumulation of coal[J]. Coal Science and Technology,2024,52(12):224−238. DOI: 10.12438/cst.2023-1461

Geological history plants dominated the net accumulation of coal

More Information
  • Received Date: November 23, 2023
  • Available Online: June 17, 2024
  • In order to explore the large-scale pure accumulation mechanism of thick coal seams, reflect on the main controlling factors of coal accumulation, and study the evolution and replacement of geological history plants and their effect, the historical comparison method was applied to deduce that the coal accumulation period was formed when plants in each period developed to the peak stage, and plants in the coal accumulation period had strong colonization ability and significant group effect, occupying the dominant position of coal accumulation. Confined by the vegetation during the coal accumulation period, the clasts in the basin can only move periodically in a limited space, forming a long clastic depletion period and a short clastic explosion period. During the debris depletion period, the sea / lake beach is fully flattened, the basement environment is “abandoned”, the water body is clear, the vegetation is dense, and the peat marshes are widely distributed. The basin fluid has become the water source of in-situ coal accumulation and the carrier of coal accumulation in different places, and pure coal can be accumulated near the syngenetic debris. With the advance and retreat of sea / lake water, peat bogs can expand across different basement environments, and even extend to the whole coal accumulation basin, improve environmental hydrology, raise groundwater level, and further change the regional climate. Dynamic peat bogs are superimposed in situ in multiple layers, forming thick coal layers in favorable sections; In the net environment constructed by vegetation, some plants and peat migrate to the sea / Lake in different places and accumulate ultra thick coal seams in the marsh lake. Coordinated transformation of in-situ coal accumulation and remote coal accumulation, sustainable development in a virtuous cycle, and the formation of a dynamic coal accumulation model of cyclic net accumulation. Vegetation prevents the input of detritus. The clear water body during transgression is conducive to the development of marine peat and the formation of carbonate rocks, replacing the terrigenous detritus deposition of transgressive sequence, forming the sea land interaction “Yoredale” cycle in which limestone and coal seams are in direct contact. During the clastic explosion period, the terrigenous clastic reservoir collapsed, some clasts rushed to the edge of the peat swamp to form rock and coal interbedding, and some were transported by peat rafts into the peat swamp to deposit intermittently, forming large sedimentary breccia scattered in the coal, while a large number of clasts were transported to the sea / lake delta by the swamp river. The plant action in the process of coal accumulation can reasonably explain some “abnormal” phenomena in coal geology and fill the blank of coal geology research.

  • [1]
    杨起,韩德馨. 煤田地质基础理论[M]. 北京:煤炭工业出版社,1979.
    [2]
    中国煤炭地质总局. 中国聚煤作用系统分析[M]. 徐州:中国矿业大学出版社,2001.
    [3]
    李增学,魏久传,刘莹. 煤地质学[M]. 北京:地质出版社,2005.
    [4]
    刘焕杰,桑树勋,郭英海,等. 我国含煤沉积学若干问题及展望[J]. 沉积学报,2003,21(1):129−132.

    LIU Huanjie,SANG Shuxun,GUO Yinghai,et al. Some problems and prospect for China on coal-bearing sedimentology[J]. Acta Sedimentologica Sinica,2003,21(1):129−132.
    [5]
    邵龙义,徐小涛,王帅,等. 中国含煤岩系古地理及古环境演化研究进展[J]. 古地理学报,2021,23(1):19−38.

    SHAO Longyi,XU Xiaotao,WANG Shuai,et al. Research progress of palaeogeography and palaeoenvironmental evolution of coal-bearing series in China[J]. Journal of Palaeogeography (Chinese Edition),2021,23(1):19−38.
    [6]
    桑树勋,陈世悦,刘焕杰. 华北晚古生代成煤环境与成煤模式多样性研究[J]. 地质科学,2001,36(2):212−221.

    SANG Shuxun,CHEN Shiyue,LIU Huanjie. Study on diversity of Late Paleozoic coal-forming environments and models in North China[J]. Scientia Geologica Sinica,2001,36(2):212−221.
    [7]
    邵龙义,鲁静,汪浩,等. 近海型含煤岩系沉积学及层序地层学研究进展[J]. 古地理学报,2008,10(6):561−570.

    SHAO Longyi,LU Jing,WANG Hao,et al. Advances in sedimentology and sequence stratigraphy of paralic coal measures[J]. Journal of Palaeogeography,2008,10(6):561−570.
    [8]
    吴冲龙,王根发,李绍虎,等. 陆相断陷盆地超厚煤层异地成因的探讨[J]. 地质科技情报,1996,15(2):63−67.

    WU Chonglong,WANG Genfa,LI Shaohu,et al. Study on allochthonous genesis of ultra thick coalbeds in continental faulted basins[J]. Bulletin of Geological Science and Technology,1996,15(2):63−67.
    [9]
    吴冲龙. 抚顺盆地的滑积煤及超厚煤层的成因模式[J]. 科学通报,1994,39(23):2175−2177. doi: 10.1360/csb1994-39-23-2175

    WU Chonglong. Genetic model of the talcum coal and super thick coal seam in Fushun Basin[J]. Chinese Science Bulletin,1994,39(23):2175−2177. doi: 10.1360/csb1994-39-23-2175
    [10]
    吴冲龙,李绍虎,黄凤鸣,等. 抚顺盆地超厚煤层的沉积条件分析[J]. 煤田地质与勘探,1997,25(2):1−6.

    WU Chonglong,LI Shaohu,HUANG Fengming,et al. Analysis on the sedimentary conditions of extra thick coal seam from Fushun coal field[J]. Coal Geology & Exploration,1997,25(2):1−6.
    [11]
    吴冲龙,王华,李绍虎,等. 中国东北抚顺盆地超厚煤层的成因研究[C]//2001年全国沉积学大会论文集. 武汉,2001:569−580.
    [12]
    吴冲龙,李绍虎,王根发,等. 陆相断陷盆地超厚煤层异地堆积的新模式[J]. 地球科学,2003,28(3):289−296.

    WU Chonglong,LI Shaohu,WANG Genfa,et al. New evidence and new model about allochthonous accumulation of extra-thick coalbeds in continental fault basin,China[J]. Earth Science,2003,28(3):289−296.
    [13]
    吴冲龙,李绍虎,王根发,等. 先锋盆地超厚优质煤层的异地成因模式[J]. 沉积学报,2006,24(1):1−9.

    WU Chonglong,LI Shaohu,WANG Genfa,et al. Genetic model about the extra-thick and high quality coalbed in Xianfeng Basin,Yunnan Province,China[J]. Acta Sedimentologica Sinica,2006,24(1):1−9.
    [14]
    王东东,邵龙义,刘海燕,等. 超厚煤层成因机制研究进展[J]. 煤炭学报,2016,41(6):1487−1497.

    WANG Dongdong,SHAO Longyi,LIU Haiyan,et al. Research progress in formation mechanisms of super-thick coal seam[J]. Journal of China Coal Society,2016,41(6):1487−1497.
    [15]
    庄军. 鄂尔多斯盆地南部巨厚煤层形成条件[J]. 煤田地质与勘探,1995,23(1):9−13.

    ZHUANG Jun. Formation condition of thick coal seam in South Ordos Basin[J]. Coal Geology & Exploration,1995,23(1):9−13.
    [16]
    邵龙义,王学天,鲁静,等. 再论中国含煤岩系沉积学研究进展及发展趋势[J]. 沉积学报,2017,35(5):1016−1031.

    SHAO Longyi,WANG Xuetian,LU Jing,et al. A reappraisal on development and prospect of coal sedimentology in China[J]. Acta Sedimentologica Sinica,2017,35(5):1016−1031.
    [17]
    杨雯. 山西地块太原组含煤地层综合研究及石炭—二叠系界线划分[D]. 北京:中国矿业大学(北京),2018.

    YANG Wen. Comprehensive study on coal bearing strata of Taiyuan Formation in Shanxi block and boundary division of Carboniferous-Permian[D]. Beijing:China University of Mining & Technology,Beijing,2018.
    [18]
    DIESSEL C F K. Coal-bearing depositional systems[M]. Berlin,Heidelberg:Springer Berlin Heidelberg,1992
    [19]
    邵龙义,张鹏飞,刘钦甫,等. 湘中下石炭统测水组沉积层序及幕式聚煤作用[J]. 地质论评,1992,38(1):52−59.

    SHAO Longyi,ZHANG Pengfei,LIU Qinfu,et al. The lower carboniferous ceshui formation in central Hunan,South China:Depositional sequences and episodic coal accumulation[J]. Geological Review,1992,38(1):52−59.
    [20]
    李增学,魏久传,韩美莲. 海侵事件成煤作用:一种新的聚煤模式[J]. 地球科学进展,2001,16(1):120−124.

    LI Zengxue,WEI Jiuchuan,HAN Meilian. Coal formation in transgressive events—a new pattern of coal accumulation[J]. Advance in Earth Sciences,2001,16(1):120−124.
    [21]
    邵龙义,陈家良,李瑞军,等. 广西合山晚二叠世碳酸盐岩型煤系层序地层分析[J]. 沉积学报,2003,21(1):168−174.

    SHAO Longyi,CHEN Jialiang,LI Ruijun,et al. A sequence stratigraphic interpretation on Late Permian carbonate coal measures in the Heshan coal field,Southern China[J]. Acta Sedimentologica Sinica,2003,21(1):168−174.
    [22]
    石彦强,邢立杰. 动态聚煤模式——兼论成煤植物在聚煤环境中的主导作用[J]. 中国煤炭地质,2009,21(S1):6−8,39.

    SHI Yanqiang,XING Lijie. Dynamic coal accumulation model-also on the leading role of coal-forming plants in coal accumulation environment[J]. Coal Geology of China,2009,21(S1):6−8,39.
    [23]
    李增学,吕大炜,王东东,等. 多元聚煤理论体系及聚煤模式[J]. 地球学报,2015,36(3):271−282.

    LI Zengxue,LÜ Dawei,WANG Dongdong,et al. The multiple coal-forming theoretical system and its model[J]. Acta Geoscientica Sinica,2015,36(3):271−282.
    [24]
    程保洲. 山西晚古生代沉积环境与聚煤规律[M]. 太原:山西科学技术出版社,1992.
    [25]
    石彦强. 聚煤期植物作用下的煤系旋回沉积[J]. 地质论评,2023,69(4):1285−1297.

    SHI Yanqiang. The cyclic sedimentation of coal-measure under the action of plants in the coal-forming period[J]. Geological Review,2023,69(4):1285−1297.
    [26]
    尚冠雄. 华北地台晚古生代煤地质学研究[M]. 太原:山西科学技术出版社,1997.
    [27]
    石彦强. 山西省朔州市平朔矿区井工三矿沉积环境及聚煤规律[J]. 中国煤炭地质,2019,31(12):6−15.

    SHI Yanqiang. Study on coal measures sedimentary environment and coal accumulation pattern in underground coalmine No. 3,Pingshuo Mining area,Shuozhou City,Shanxi Province[J]. Coal Geology of China,2019,31(12):6−15.
    [28]
    石彦强. 山西平朔井工三矿煤系角砾岩特殊成因探讨[J]. 煤田地质与勘探,2021,49(3):102−111.

    SHI Yanqiang. The origin of coal measure breccia in Jinggong No. 3 Coal Mine,Pingshuo,Shanxi[J]. Coal Geology & Exploration,2021,49(3):102−111.
    [29]
    MEIXNEROVÁ J,BLUM J D,JOHNSON M W,et al. Mercury abundance and isotopic composition indicate subaerial volcanism prior to the end-Archean “whiff” of oxygen[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(33):e2107511118.
    [30]
    白楠,徐尚,王雨轩,等. 柴北缘鱼卡地区大煤沟组七段页岩岩相特征及沉积演化模式[J]. 西北地质,2021,54(2):74−85.

    BAI Nan,XU Shang,WANG Yuxuan,et al. Facies characteristics and sedimentary evolution model of the 7th member of dameigou formation in Yuqia area,North Qaidam Basin[J]. Northwestern Geology,2021,54(2):74−85.
    [31]
    赵国春,韩以贵,李建华,等. 超大陆聚散的环境效应[J]. 地质学报,2022,96(9):3120−3127.

    ZHAO Guochun,HAN Yigui,LI Jianhua,et al. Environmental effects of assembly and breakup of supercontinents[J]. Acta Geologica Sinica,2022,96(9):3120−3127.
    [32]
    夏林圻,徐学义,李向民,等. 亚洲3个大火成岩省(峨眉山、西伯利亚、德干)对比研究[J]. 西北地质,2012,45(2):1−26.

    XIA Linqi,XU Xueyi,LI Xiangmin,et al. Comparison of three large igneous provinces (Emeishan,Siberia,Deccan) in Asia[J]. Northwestern Geology,2012,45(2):1−26.
    [33]
    陈军,徐义刚. 二叠纪大火成岩省的环境与生物效应:进展与前瞻[J]. 矿物岩石地球化学通报,2017,36(3):374−393.

    CHEN Jun,XU Yigang. Permian large igneous provinces and their impact on paleoenvironment and biodiversity:Progresses and perspectives[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2017,36(3):374−393.
    [34]
    刘莉,万明礼,王军. 内蒙古乌达早二叠世火山凝灰岩植物群中长星叶Asterophyllites longifolius(Sternberg)Brongniart的形态复原与生态习性探讨[J]. 古生物学报,2017,56(3):357−373.

    LIU Li,WAN Mingli,WANG Jun. Reconstruction of asterophyllites longifolius(sternberg)brongniart from the early Permian Wuda tuff flora,Inner Mongolia,and its ecological significance[J]. Acta Palaeontologica Sinica,2017,56(3):357−373.
    [35]
    张文斌,何碧,陶刚,等. 黔北新仁地区上二叠统龙潭组煤质地球化学特征及聚煤规律[J]. 西北地质,2020,53(4):51−65.

    ZHANG Wenbin,HE Bi,TAO Gang,et al. Geochemical characteristics and accumulation rules of coal in the upper Permian Longtan formation of xinren area,North Guizhou[J]. Northwestern Geology,2020,53(4):51−65.
    [36]
    李聪聪,孙顺新,张光超. 滇东北峨眉山玄武岩对晚二叠世含煤建造的影响[J]. 中国煤炭地质,2013,25(4):1−6. doi: 10.3969/j.issn.1674-1803.2013.04.01

    LI Congcong,SUN Shunxin,ZHANG Guangchao. Impact from Emeishan basalt on Late Permian coal-bearing formation in northeastern Yunnan[J]. Coal Geology of China,2013,25(4):1−6. doi: 10.3969/j.issn.1674-1803.2013.04.01
    [37]
    谢树成,殷鸿福,王风平,等. 若干重大地质环境突变的地球生物学过程[J]. 中国基础科学,2015,17(4):30−34.

    XIE Shucheng,YIN Hongfu,WANG Fengping,et al. Geobiological processes during some critical environmental shifts in earth history[J]. China Basic Science,2015,17(4):30−34.
    [38]
    王铭,刘子刚,马学慧,等. 世界泥炭分布规律[J]. 湿地科学,2013,11(3):339−346.

    WANG Ming,LIU Zigang,MA Xuehui,et al. Distribution law of peat in the world[J]. Wetland Science,2013,11(3):339−346.
    [39]
    DAI S F,BECHTEL A,EBLE C F,et al. Recognition of peat depositional environments in coal:A review[J]. International Journal of Coal Geology,2020,219:103383. doi: 10.1016/j.coal.2019.103383
    [40]
    殷鸿福,喻建新,罗根明,等. 地史时期生物对冰室气候形成的作用[J]. 地球科学,2018,43(11):3809−3822.

    YIN Hongfu,YU Jianxin,LUO Genming,et al. Biotic influence on the formation of icehouse climates in geologic history[J]. Earth Science,2018,43(11):3809−3822.
    [41]
    刘子刚,王铭,马学慧. 世界泥炭地有机碳储量和有机碳密度[J]. 湿地科学,2014,12(3):279−285.

    LIU Zigang,WANG Ming,MA Xuehui. Estimation of organic carbon storage of peatlands in the world[J]. Wetland Science,2014,12(3):279−285.
    [42]
    林超然,朱龙海,胡日军,等. 黏性沉积物可侵蚀性研究现状与展望[J]. 海洋地质前沿,2023,39(1):1−17.

    LIN Chaoran,ZHU Longhai,HU Rijun,et al. Status quo and prospect of research on erodibility of viscous sediments[J]. Marine Geology Frontiers,2023,39(1):1−17.
    [43]
    石彦强. 约代尔旋回形成机制之我见——以华北克拉通晚古生代煤系沉积为例[J]. 地质论评,2021,67(5):1197−1206.

    SHI Yanqiang. My view on the formation mechanism of the yoredale cycle—a case study of Late Paleozoic coal formation deposits in the North China Craton[J]. Geological Review,2021,67(5):1197−1206.
    [44]
    刘子刚,马学慧. 世界最大的泥炭地——俄罗斯瓦休甘泥炭沼泽[J]. 湿地科学与管理,2006,2(3):62−63.

    LIU Zigang,MA Xuehui. The largest peat land in the world - the vashugan peat swamp in Russia[J]. Wetland Science & Management,2006,2(3):62−63.
    [45]
    柴岫. 泥炭地学[M]. 北京:地质出版社,1990.
    [46]
    彭格林,张则有,伍大茂. 泥炭与煤形成环境对比研究现状[J]. 地球科学进展,1999,14(3):247−255.

    PENG Gelin,ZHANG Zeyou,WU Damao. The study status of correlation of peat with coal forming environment[J]. Advances in Earth Science,1999,14(3):247−255.
    [47]
    邱广龙,林幸助,李宗善,等. 海草生态系统的固碳机理及贡献[J]. 应用生态学报,2014,25(6):1825−1832.

    QIU Guanglong,LIN Xingzhu,LI Zongshan,et al. Seagrass ecosystems:Contributions to and mechanisms of carbon sequestration[J]. Chinese Journal of Applied Ecology,2014,25(6):1825−1832.
    [48]
    胡社荣,蔺丽娜,黄灿,等. 超厚煤层分布与成因模式[J]. 中国煤炭地质,2011,23(1):1−5.

    HU Sherong,LIN Lina,HUANG Can,et al. Distribution and genetic model of extra-thick coal seams[J]. Coal Geology of China,2011,23(1):1−5.
    [49]
    段景颐. 泥炭沼泽那些事儿[J]. 大自然探索,2020,39(1):36−41.

    DUAN Jingyi. About peat bogs[J]. Discovery of Nature,2020,39(1):36−41.
    [50]
    赵隆业. 煤层地质基础[M]. 北京:地震出版社,2000.
    [51]
    尹善春. 厚层泥炭的形成研究[C]//厚层泥炭的形成与现代聚煤作用. 长沙:中南工业大学出版社. 1994.
    [52]
    王东东,李增学,王真奉,等. 黑龙江依兰盆地古近系煤与油页岩共生特点及层序地层格架[J]. 中国煤炭地质,2013,25(12):1−7.

    WANG Dongdong,LI Zengxue,WANG Zhenfeng,et al. Paleogene coal and oil shale paragenetic features and sequence stratigraphic framework in Yilan Basin,Heilongjiang[J]. Coal Geology of China,2013,25(12):1−7.
    [53]
    孔凡飞,贾强,李增学,等. 山东黄县盆地古近系李家崖组含煤岩系沉积相特征及演化[J]. 古地理学报,2019,21(3):469−478.

    KONG Fanfei,JIA Qiang,LI Zengxue,et al. Sedimentary facies characteristis and evolution of coal-bearing rock series of the Paleogene Lijiaya Formation in Huangxian Basin,Shandong Province[J]. Journal of Palaeogeography (Chinese Edition),2019,21(3):469−478.
    [54]
    徐小涛,郝洪波,王海亮,等. 山东五图煤矿李家崖组煤与油页岩共生沉积特征研究[J]. 中国煤炭地质,2016,28(9):1−9.

    XU Xiaotao,HAO Hongbo,WANG Hailiang,et al. Study on lijiaya formation coal and oil shale paragenesis sedimentary features in Wutu coalmine[J]. Coal Geology of China,2016,28(9):1−9.
    [55]
    胡益成,廖玉枝. 河南荥巩煤田早二叠世早期地层中异地煤的成因动力学研究[J]. 中国煤田地质,2000,12(2):3−7.

    HU Yicheng,LIAO Yuzhi. Research on genetical dynamics of AllochthonousCoal in early Permian strata of XinggongCoal field,Henan Province[J]. Coal Geology of China,2000,12(2):3−7.

Catalog

    Article views (331) PDF downloads (109) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return