Citation: | WU Yongping,DU Yuqian,XIE Panshi,et al. Structural design and motion response of parallelogram hydraulic support in pitching oblique mining face of steeply dipping coal seam[J]. Coal Science and Technology,2024,52(4):314−325. DOI: 10.12438/cst.2023-1437 |
The hydraulic support is the core of the stability of the ‘surrounding rock and equipm ent’ system in the pitching oblique working face of steeply dipping coal seam. The existing hydraulic support structure can not meet the requirements of spatial stability of pitching oblique mining, which seriously affects the safe and efficient mining of working face under such conditions. Taking the pitching oblique working face of steeply dipping coal seam as the research background, the comprehensive research methods of engineering analogy, structural kinematics analysis and numerical simulation are used to analyze the stability characteristics of ‘support-surrounding rock’ in the pitching oblique working face of steeply dipping coal seam. Based on ZY7000/22/45 hydraulic support, a new parallelogram hydraulic support is invented, the structural rationality design is carried out, and the kinematic response characteristics of key components are analyzed.The research shows that the non-uniform filling of the caving gangue and the crushing, pressing and pushing effect of the gangue on the support are the key factors affecting the stability of the support. The parallelogram top beam and the base are more suitable for the pitching oblique working face. The arrangement of the top beam, base and column of the parallelogram support is parallelogram. The special-shaped shield beam, the rear connecting rod, the oil cylinder connecting rod and the base constitute a flexible four-link structure. The column of the parallelogram support is the main bearing structure, and the cylinder connecting rod is the main motion mechanism. The main influencing factors of its motion characteristics are the distance between the upper and lower column sockets and the distance between the front and rear connecting rods and the hinged position of the shield beam. The shield beam and the rear connecting rod are the key to the position and posture control of the support, and there is no double torsion line during the movement of the support. The research results provide a type selection for the support of this kind of working face, which ensures the safe production of this kind of coal seam to a certain extent.
[1] |
伍永平,贠东风,解盘石,等. 大倾角煤层长壁综采理论与技术[M]. 北京:科学出版社,2017.
|
[2] |
伍永平,贠东风,解盘石,等. 大倾角煤层长壁综采:进展、实践、科学问题[J]. 煤炭学报,2020,45(1):24−34.
WU Yongping,YUN Dongfeng,XIE Panshi,et al. Progress,practice and scientific issues in steeply dipping coal seams fully-mechanized mining[J]. Journal of China Coal Society,2020,45(1):24−34.
|
[3] |
伍永平,解盘石,贠东风,等. 大倾角层状采动煤岩体重力-倾角效应与岩层控制[J]. 煤炭学报,2023,48(1):100−113.
WU Yongping,XIE Panshi,YUN Dongfeng,et al. Gravity-dip effect and strata control in mining of the steeply dipping coal seam[J]. Journal of China Coal Society,2023,48(1):100−113.
|
[4] |
王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27.
WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27.
|
[5] |
孟祥瑞,赵启峰,刘庆林. 大倾角煤层综采面围岩控制机理及回采技术[J]. 煤炭科学技术,2007,35(8):25−28.
MENG Xiangrui,ZHAO Qifeng,LIU Qinglin. Surrounding rock control mechanism and mining technology of fully mechanized mining face in steep seam[J]. Coal Science and Technology,2007,35(8):25−28.
|
[6] |
伍永平,贠东风. 大倾角综采支架稳定性控制[J]. 采矿与安全工程学报,1999,16(3):82−85.
WU Yongping,YUN Dongfeng. Stability control of fully mechanized support in deeply inclined coal seam[J]. Ground Pressure and Strata Control,1999,16(3):82−85.
|
[7] |
尹光志,代高飞,皮文丽,等. 伪俯斜分段密集支柱采煤法缓和急倾斜煤层矿压显现不均匀现象的研究[J]. 岩石力学与工程学报,2003,22(9):1483−1488.
YIN Guangzhi,DAI Gaofei,PI Wenli,et al. Study on unven ground pressure in pitching oblique underhand mining[J]. Journal of Mining and Safety Engineering,2003,22(9):1483−1488.
|
[8] |
施 峰,王宏图,范晓刚,等. 伪俯斜采煤法基本顶破断的力学分析[J]. 煤炭学报,2013,38(6):1001−1005.
SHI Feng,WANG Hongtu,FAN Xiaogang,et al. Mechanical analysis of basic top breaking in the pseudo-polt coal mining method[J]. Journal of China Coal Society,2013,38( 6):1001−1005.
|
[9] |
杨胜利,赵文斌,李良晖. 急倾斜煤层伪俯斜走向长壁工作面煤壁破坏机理[J]. 煤炭学报,2019,44(2):367−376.
YANG Shengli,ZHAO Wenbin,LI Lianghui. Coal wall failure mechanism of longwall working face with false dip in steep coal seam[J]. Journal of China Coal Society,2019,44(2):367−376.
|
[10] |
田 权. 大倾角工作面支撑掩护式液压支架稳定性分析与防倒滑设计[J]. 煤矿机械,2020,41(8):139−141.
TIAN Quan. Stability analysis and anti-backsliding design of support shield type hydraulic support in large-dip working face[J]. Coal Mine Machinery,2020,41(8):139−141.
|
[11] |
贠东风,杨晨晖,伍永平,等. 大倾角煤层长壁综采顶板冒落形态与支架稳态控制[J]. 西安科技大学学报,2023,43(2):255−263.
YUN Dongfeng,YANG Chenhui,WU Yongping,et al. Roof caving form and steady state control of shield powered supportin longwall fully-mechanized mining with steeply dipping seam[J]. Journal of Xi’an University of Science and Technology,2023,43(2):255−263.
|
[12] |
王祥生,陈再明,赵天佑. 推移千斤顶在推溜工况下力学行为分析[J]. 辽宁工程技术大学学报(自然科学版),2019,38(4):345−349.
WANG Xiangsheng,CHEN Zaiming,ZHAO Tianyou. Mechanical behavior analysis of propelling jack under sliding working situation[J]. Journal of Liaoning Technical University(Natural Science),2019,38(4):345−349.
|
[13] |
贠东风,刘 柱,程文东,等. 大倾角支架底调机构应用效果分析[J]. 煤炭技术,2015,34(5):230−233.
YUN Dongfeng,LIU Zhu,CHENG Wendong,et al. Analysis of application effect of steeply dipping powered support base adjust mechanism[J]. Coal Technology,2015,34(5):230−233.
|
[14] |
贠东风,谷 斌,伍永平,等. 大倾角煤层长壁综采支架典型应用实例及改进研究[J]. 煤炭科学技术,2017,45(1):60−67,72.
YUN Dongfeng,GU Bin,WU Yongping,et al. Typical application examples and improvement research of hydraulic poweredsupport applied to fully-mechanized longwall coal mining face in steep dipping seam[J]. Coal Science and Technology,2017,45(1):60−67,72.
|
[15] |
章之燕. 大倾角综放液压支架稳定性动态分析和防倒防滑措施[J]. 煤炭学报,2007,32(7):705−709.
ZHANG Zhiyan. Dynamic analysis on stability of hydraulic powered support in deep inclined fully mechanized wall and prevention slips measures[J]. Journal of China Coal Society,2007,32(7):705−709.
|
[16] |
李大政,高海亮,王洪武. 大倾角综放长工作面设备防倒防滑技术[J]. 煤炭科学技术,2013,41(S2):75−77.
LI Dazheng,GAO Hailiang,WANG Hongwu. Technology of fall prevention antiskid to equipment in fully mechanized caving coal long face with large angle[J]. Coal Science and Technology,2013,41(S2):75−77.
|
[17] |
曹树刚,李 毅,雷才国,等. 采煤工作面轻型架间挡矸装置研究[J]. 采矿与安全工程学报,2013,30(1):51−56.
CAO Shugang,LI Yi,LEI Caiguo,et al. Research on lightweight device for blocking gangue between hydraulic supports in steeply inclined coal face[J]. Journal of Mining& Safety Engineering,2013,30(1):51−56.
|
[18] |
王国法,杜毅博,徐亚军,等. 中国煤炭开采技术及装备50年发展与创新实践:纪念《煤炭科学技术》创刊50周年[J]. 煤炭科学技术,2023,51(1):1−18.
WANG Guofa,DU Yibo,XU Yajun,et al. Development and innovation practice of China coal mining technology and equipment for 50 years: commemorate the 50th anniversary of the publication of Coal Science and Technology[J]. Coal Science and Technology,2023,51(1):1−18.
|
[19] |
伍永平,杨玉冰,王 同,等. 大倾角走向长壁伪俯斜采场支架稳定性分析[J]. 煤炭科学技术,2022,50(1):60−69.
WU Yongping,YANG Yubing,WANG Tong,et al. Stability analysis of support under gangue filling condition in pitching oblique mining area of steeply dipping seam[J]. Coal Science and Technology,2022,50(1):60−69.
|
[20] |
解盘石,张颖异,张艳丽,等. 大倾角大采高煤矸互层顶板失稳规律及对支架的影响[J]. 煤炭学报,2021,46(2):344−356.
XIE Panshi,ZHANG Yingyi,ZHANG Yanli,et al. Instability law of the coal-rock interbedded roof and its influence on supports in large mining height working face with steeply dipping coal seam[J]. Journal of China Coal Society,2021,46(2):344−356.
|
[21] |
杨 科,池小楼,刘 帅. 大倾角煤层综采工作面液压支架失稳机理与控制[J]. 煤炭学报,2018,43(7):1821−1828.
YANG Ke,CHI Xiaolou,LIU Shuai. Instability mechanism and control of hydraulic support in fully mechanized longwall mining with large dip[J]. Journal of China Coal Society,2018,43(7):1821−1828.
|
[22] |
解盘石,田双奇,段建杰. 大倾角伪俯斜采场顶板运移规律实验研究[J]. 煤炭学报,2019,44(10):2974−2982.
XIE Panshi,TIAN Shuangqi,DUAN Jianjie. Experimental study on the movement law of roof in pitching oblique miningarea of steeply dipping seam[J]. Journal of China Coal Society,2019,44(10):2974−2982.
|
[23] |
王国法. 液压支架技术[M]. 北京:煤炭工业出版社,1999.
|
[24] |
王国法. 液压支架技术体系研究与实践[J]. 煤炭学报,2010,35(11):1903−1908.
WANG Guofa. Study and practices on technical system of hydraulic powered supports[J]. Journal of China Coal Society,2010,35(11):1903−1908.
|
[25] |
郭 军,郭星辰,冯国瑞,等. 微型四柱式放顶煤液压支架设计及其适应性研究[J]. 煤炭学报,2023,48(S2):766−777.
GUO Jun,GUO Xingchen,FENG Guorui,et al. Design and adaptability research of micro four-column top coal caving hydraulic support[J]. Journal of China Coal Society,2023,48(S2):766−777.
|
[26] |
李提建,靳丰田. 支架四连杆机构解析法设计与优化[J]. 矿山机械,2015,43(11):25−27.
LI Tijian,JIN Fengtian. Design and optimization on analytic method of support four-bar linkage[J]. Mining & Processing Equipment,2015,43(11):25−27.
|
[27] |
许盛业. ZZ5000型液压支架运动误差及强度分析[D]. 阜新:辽宁工程技术大学,2022.
XU Shengye. Motion error and strength analysis of ZZ5000 hydraulic support[D].Fuxin: Liaoning Technical University, 2022.
|
[28] |
曾庆良,徐鹏辉,孟昭胜,等. 冲击载荷下四柱支撑掩护式液压支架动态响应特征分析[J]. 煤炭科学技术,2023,51(1):437−445.
ZENG Qingliang,XU Penghui,MENG Zhaosheng,et al. Dynamic response characteristics analysis of four column chock shield support under impact load[J]. Coal Science and Technology,2023,51(1):437−445.
|
1. |
杨科,何淑欣,何祥,初茉,周伟,袁宁,陈登红,龚鹏,张元春. 煤电化基地大宗固废“三化”协同利用基础与技术. 煤炭科学技术. 2024(04): 69-82 .
![]() | |
2. |
武振,商和福,宗宪生. 济三矿煤矸井下原位智能分选系统及技术研究. 煤炭科技. 2024(04): 186-191+196 .
![]() | |
3. |
于斌,邰阳,徐刚,李勇,李东印,王世博,匡铁军,孟二存. 千万吨级综放工作面智能化放煤理论及关键技术. 煤炭科学技术. 2024(09): 48-67 .
![]() | |
4. |
王思云,任美嘉,周进生. 任家庄煤矿绿色充填示范工程经济社会效益评价研究. 能源科技. 2024(06): 27-30+35 .
![]() |