Citation: | HU Qingsong,ZHENG Shuo,LI Shiyin,et al. An intelligent prediction method of gas concentration in coal mines based onimproved TCN-TimeGAN[J]. Coal Science and Technology,2024,52(S2):321−330. DOI: 10.12438/cst.2023-1404 |
The prediction of gas concentration is of great importantance to ensure the safety of mine production. The gas concentration data has the characteristics of small sample size and time dependence, and traditional machine learning methods are not effective. A time convolution improved time series Generative adversarial network (TCN-TimeGAN) is proposed. Based on the characteristics of generative adversarial network (GAN), the problem of over-fitting of small samples of gas data is improved, and the receptive field is enlarged based on TCN network to read long-term dimension features. In the design of loss function, Wasserstein distance is used to measure the distribution of gas data, and the gradient penalty term of adaptive weight is added to the identification network loss function, so as to solve the problems of data irregularity and gradient disappearance, and improve training stability and prediction accuracy. When conducting model training, the first step is to normalize the gas time series and process missing data values. The processing results are used as input sequences of the embedding network and recovery network to reduce reconstruction loss. Subsequently, the input sequences are also input into the supervised network to reduce supervision loss. Finally, joint training is conducted, and the total loss is the sum of the generated network loss and the discriminative network loss. The experiment results show that the data generated by the proposed model can cover the original data distribution more comprehensively, and the mean square error (MSE), root mean square error (RMSE) and mean absolute error (MAE) of the results predicted from the generated data by the improved model are much smaller than those of the comparison model, and the prediction can be stable and accurate in all time periods.
[1] |
刘业娇,袁亮,薛俊华,等. 2007—2016年全国煤矿瓦斯灾害事故发生规律分析[J]. 矿业安全与环保,2018,45(3):124−128. doi: 10.3969/j.issn.1008-4495.2018.03.028
LIU Yejiao,YUAN Liang,XUE Junhua,et al. Analysis on the occurrence law of gas disaster accidents in coal mine from 2007 to 2016[J]. Mining Safety & Environmental Protection,2018,45(3):124−128. doi: 10.3969/j.issn.1008-4495.2018.03.028
|
[2] |
李晓燕,李弢,马尽文. 高斯过程混合模型在含噪输入预测策略下的煤矿瓦斯浓度柔性预测[J]. 信号处理,2021,37(11):2031−2040.
LI Xiaoyan,LI Tao,MA Jinwen. Soft prediction of coal-mine gas concentration through the mixture of Gaussian processes under the noisy input prediction strategy[J]. Journal of Signal Processing,2021,37(11):2031−2040.
|
[3] |
刘超,雷晨,李树刚,等. 基于CNN-GRU的瓦斯浓度预测模型及应用[J]. 中国安全生产科学技术,2022,18(9):62−68.
LIU Chao,LEI Chen,LI Shugang,et al. Prediction model of gas concentration based on CNN-GRU and its application[J]. Journal of Safety Science and Technology,2022,18(9):62−68.
|
[4] |
董丁稳,李树刚,常心坦,等. 瓦斯浓度区间预测的灰色聚类与高斯过程模型[J]. 中国安全科学学报,2011,21(5):40−45. doi: 10.3969/j.issn.1003-3033.2011.05.007
DONG Dingwen,LI Shugang,CHANG Xintan,et al. Grey clustering and Gaussian process model for gas concentration interval prediction[J]. China Safety Science Journal,2011,21(5):40−45. doi: 10.3969/j.issn.1003-3033.2011.05.007
|
[5] |
戚昱. 基于信息融合和GA-BP的煤矿瓦斯浓度预测方法研究[J]. 煤炭技术,2022,41(6):159−161.
QI Yu. Research on coal mine gas concentration prediction method based on information fusion and GA-BP[J]. Coal Technology,2022,41(6):159−161.
|
[6] |
范京道,黄玉鑫,闫振国,等. ARIMA−SVM组合模型驱动下的瓦斯浓度预测研究[J]. 工矿自动化,2022,48(9):134−139.
FAN Jingdao,HUANG Yuxin,YAN Zhenguo,et al. Research on gas concentration prediction driven by ARIMA-SVM combined model[J]. Industry and Mine Automation,2022,48(9):134−139.
|
[7] |
李欢,贾佳,杨秀宇,等. 煤矿综采工作面瓦斯浓度预测模型[J]. 工矿自动化,2018,44(12):48−53.
LI Huan,JIA Jia,YANG Xiuyu,et al. Gas concentration prediction model for fully mechanized coal mining face[J]. Industry and Mine Automation,2018,44(12):48−53.
|
[8] |
郭风景,王斌,贾澎涛,等. 基于梯度提升决策树的瓦斯浓度在线预测[J]. 中国煤炭,2023,49(10):61−67.
GUO Fengjing,WANG Bin,JIA Pengtao,et al. Online prediction of gas concentration based on gradient boosting decision tree[J]. China Coal,2023,49(10):61−67.
|
[9] |
吴奉亮,霍源,高佳南. 基于随机森林回归的煤矿瓦斯涌出量预测方法[J]. 工矿自动化,2021,47(8):102−107.
WU Fengliang,HUO Yuan,GAO Jianan. Coal mine gas emission prediction method based on random forest regression[J]. Industry and Mine Automation,2021,47(8):102−107.
|
[10] |
SONG S,CHEN J T,MA L,et al. Research on a working face gas concentration prediction model based on LASSO-RNN time series data[J]. Heliyon,2023,9(4):e14864. doi: 10.1016/j.heliyon.2023.e14864
|
[11] |
付华,赵俊程,付昱,等. 基于量子粒子群与深度学习的煤矿瓦斯涌出量软测量[J]. 仪器仪表学报,2021,42(4):160−168.
FU Hua,ZHAO Juncheng,FU Yu,et al. Soft measurement of coal mine gas emission based on quantum-behaved particle swarm optimization and deep learning[J]. Chinese Journal of Scientific Instrument,2021,42(4):160−168.
|
[12] |
程子均,马六章,张翼翔. 基于LSTM-FC的瓦斯浓度时空分布预测[J]. 计算机工程与应用,2020,56(16):258−264. doi: 10.3778/j.issn.1002-8331.2005-0250
CHENG Zijun,MA Liuzhang,ZHANG Yixiang. Prediction of spatiotemporal distribution of gas concentration based on LSTM-FC model[J]. Computer Engineering and Applications,2020,56(16):258−264. doi: 10.3778/j.issn.1002-8331.2005-0250
|
[13] |
梁俊杰,韦舰晶,蒋正锋. 生成对抗网络GAN综述[J]. 计算机科学与探索,2020,14(1):1−17. doi: 10.3778/j.issn.1673-9418.1910026
LIANG Junjie,WEI Jianjing,JIANG Zhengfeng. Generative adversarial networks GAN overview[J]. Journal of Frontiers of Computer Science and Technology,2020,14(1):1−17. doi: 10.3778/j.issn.1673-9418.1910026
|
[14] |
王鹏,许辉群,彭真. 基于TCN的生成对抗网络半监督地震波阻抗反演方法[C]//2022年中国石油物探学术年会论文集(下册). 海口:石油地球物理勘探编辑部,2022:478−481.
WANG Peng,XU Huiqun,PENG Zhen. Semi-supervised seismic wave impedance inversion method of generative adversarial network based on TCN:2022 China Petroleum Geophysical Annual Conference[C]//Proceedings of the 2022 China Petroleum Geophysical Exploration Academic Annual Conference (Volume 2). Haikou:Editorial Department of Petroleum Geophysical Exploration,2022:478−481.
|
[15] |
赵凌云,刘友波,沈晓东,等. 基于CEEMDAN和改进时间卷积网络的短期风电功率预测模型[J]. 电力系统保护与控制,2022,50(1):42−50.
ZHAO Lingyun,LIU Youbo,SHEN Xiaodong,et al. Short-term wind power prediction model based on CEEMDAN and an improved time convolutional network[J]. Power System Protection and Control,2022,50(1):42−50.
|
[16] |
GULRAJANI I,AHMED F,ARJOVSKY M,et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM,2017:5769−5779.
|
[17] |
YOON J,JARRETT D,SCHAAR M V D. Time-series Generative Adversarial Networks[C]//Neural Information Processing Systems. Vancouver:NeurIPS,2019:1−11.
|
[18] |
陈刚,王印,单锦宁,等. 生成对抗网络在风电功率预测中的应用[J]. 辽宁工程技术大学学报(自然科学版),2021,40(3):258−264. doi: 10.11956/j.issn.1008-0562.2021.03.010
CHEN Gang,WANG Yin,SHAN Jinning,et al. Application of generation countermeasure network in wind power forecasting[J]. Journal of Liaoning Technical University (Natural Science),2021,40(3):258−264. doi: 10.11956/j.issn.1008-0562.2021.03.010
|
[19] |
熊亚军,谢林柏,彭力. 基于JS散度和潜在特征提取的多块PCA故障监测[J]. 仪表技术与传感器,2022(5):105−110,120. doi: 10.3969/j.issn.1002-1841.2022.05.021
XIONG Yajun,XIE Linbo,PENG Li. Multiblock PCA fault monitoring based on JS divergence and latent feature extraction[J]. Instrument Technique and Sensor,2022(5):105−110,120. doi: 10.3969/j.issn.1002-1841.2022.05.021
|
[20] |
王路阳,孙一宸,于明鑫,等. 基于TimeGAN-LSTM的无人机GPS欺骗干扰检测模型[J]. 电子测量与仪器学报,2023,37(6):122−135.
WANG Luyang,SUN Yichen,YU Mingxin,et al. UAV GPS spoofing detection model based on TimeGAN-LSTM[J]. Journal of Electronic Measurement and Instrumentation,2023,37(6):122−135.
|
[21] |
LI Q,ZHANG X Y,MA T J,et al. A Multi-step ahead photovoltaic power forecasting model based on TimeGAN,Soft DTW-based K-medoids clustering,and a CNN-GRU hybrid neural network[J]. Energy Reports,2022,8:10346−10362. doi: 10.1016/j.egyr.2022.08.180
|
1. |
孙凯茜,李晓敬,于聪灵,宋娟娟,刘璐,王泽宇,冉卓,刘玥. 高温高压微波消解-电感耦合等离子体质谱法测定煤及粉煤灰中稀土元素. 湿法冶金. 2025(02): 271-279 .
![]() |