Advance Search
ZHU Chuanqi,WANG Lei,CHEN Lipeng,et al. Wave velocity evolution and fracture distribution of soft coal under uniaxial compression[J]. Coal Science and Technology,2024,52(4):288−301. DOI: 10.12438/cst.2023-1388
Citation: ZHU Chuanqi,WANG Lei,CHEN Lipeng,et al. Wave velocity evolution and fracture distribution of soft coal under uniaxial compression[J]. Coal Science and Technology,2024,52(4):288−301. DOI: 10.12438/cst.2023-1388

Wave velocity evolution and fracture distribution of soft coal under uniaxial compression

Funds: 

Natural Science Research Funding Project of Universities in Anhui Province (2023AH040153); National Natural Science Foundation of China Funding Project (52004007)

More Information
  • Received Date: September 26, 2023
  • Available Online: March 29, 2024
  • In order to study the ultrasonic propagation law and damage characteristics of the soft coal body, coal briquette is selected to replace raw coal, three wave propagation paths were set, and MTS rock mechanics experiment machine and PCI-II acoustic emission instrument were used to carry out the multi-path wave synchronization monitoring test of the coal body under the condition of uniaxial compression, and the anisotropy index was introduced to analyze the wave velocity evolution law. Three transverse and longitudinal sections were selected, and CT scanning equipment was used to carry out damage characterization experiments, reconstruct the micro-structure of the coal body after failure, and compare and study the differences in the distribution of the transverse and longitudinal fissures of two-dimensional slices, and to explore the relationship between the wave velocity and the three-dimensional volume of the fissures. Results show that: ① The parallel and vertical loading directions and the average wave velocity of the coal body show the basic law of smoothness followed by decrease and then smoothness with the increase of axial strain.The wave velocity anisotropy index has a smooth, then increasing and then smooth trend with the increase of axial strain, and the wave velocity in the vertical loading direction is the first to decrease, and the decrement is the largest. ② Compared with the vertical plane, the fracture spectral peak ratio and fractal dimension of the transverse plane of the damaged coal body are larger, the fracture density is higher, and the fracture morphology is also more complicated. ③ With the increase of fissure volume, the average wave velocity of the damaged coal body decreases roughly linearly, and the expansion of internal fissures in the coal body under uniaxial loading is dominated by the parallel loading direction, and the vertical linear expansion of the fissures is the main cause of the variability of the wave velocity in all directions and the damage characteristics of the transverse and longitudinal sections. ④ Compared with the parallel loading direction, the damage variables obtained by using the wave velocity in the vertical loading direction are larger and the evaluation of the damage state of the coal body is more reliable. When sound waves are used in the field to evaluate the damage state of coal , it is beneficial to improve the reasonableness of the prediction of instability accidents by making the sound wave propagation path perpendicular to the direction of the coal body loaded (maximum principal stress).

  • [1]
    张子敏. 瓦斯地质学[M]. 徐州:中国矿业大学出版社,2009:303−305.

    ZHANG Zimin. Gas geology [M]. Xuzhou:China University of Mining and Technology Press,2009:303−305.
    [2]
    刘 春. 松软煤层瓦斯抽采钻孔塌孔失效特性及控制技术基础[D]. 徐州:中国矿业大学,2014.

    LIU Chun. Study on mechanism and controlling of borehole collapse in soft coal seam [D]. Xuzhou:China University of Mining and Technology,2014.
    [3]
    康红普,姜鹏飞,杨建威,等. 煤矿千米深井巷道松软煤体高压锚注-喷浆协同控制技术[J]. 煤炭学报,2021,46(3):747−762.

    KANG Hongpu,JIANG Pengfei,YANG Jianwei,et al. Roadway soft coal control technology by means of grouting bolts with high pressure-shotcreting in synergy in more than 1000 m deep coal mines[J]. Journal of China Coal Society,2021,46(3):747−762.
    [4]
    陈 贵. 极软易燃特厚煤层综放开采技术[J]. 煤炭学报,2010,35 (11):1873−877.

    CHEN Gui. Fully mechanized top coal caving mining technology of ultra soft,combustible and special thick seam[J]. Journal of China Coal Society,2010,35(11):1873−1877.
    [5]
    王 沉,屠世浩,李召鑫,等. 深部“三软”煤层回采巷道断面优化研究[J]. 中国矿业大学学报,2015,44(1):9−15.

    WANG Chen,TU Shihao,LI Zhaoxini,et al. Section optimization of deep gateways in three soft coal seam[J]. Journal of China University of Mining & Technology,2015,44(1):9−15.
    [6]
    袁 永,屠世浩,马小涛,等. “三软”大采高综采面煤壁稳定性及其控制研究[J]. 采矿与安全工程学报,2012,29(1):21−25. doi: 10.3969/j.issn.1673-3363.2012.01.004

    YUAN Yong,TU Shihao,MA Xiaotaoi,et al. Coal wall stability of fully mechanized working face with great mining height in “three soft”coal seam and its control technology[J]. Journal of Mining & Safety Engineering,2012,29(1):21−25. doi: 10.3969/j.issn.1673-3363.2012.01.004
    [7]
    GAN Qingqing,XU Jiang,DOMG Bingyan,et al. Effect of chemical structure on mechanical-seepage characteristics of briquette under different heating temperatures[J]. Powder Technology,2023,428(10):1−14.
    [8]
    GU Helong,TAO Ming,LI Xibing ,et al. Dynamic tests and mechanical model for water-saturated soft coal with various particle gradations[J]. International Journal of Rock Mechanics and Mining Sciences,2020,132(8):1−12.
    [9]
    尹光志,王登科,张东明,等. 两种含瓦斯煤样变形特性与抗压强度的实验分析[J]. 岩石力学与工程学报,2009,28(2):410−417.

    YIN Guangzhi,WANG Dengke,ZHANG Dongming,et al. Test analysis of deformation characteristics and compressive strength of two types of coal specimens containing gas[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(2):410−417.
    [10]
    许 江,甘青青,蔡果良,等. 二次炭化型煤成型装置及型煤制作方法[J]. 煤炭学报,2022,47(11):4055−4068.

    XU Jiang,GAN Qingqing,CAI Guoliang,et al. Thermal forming method and device for secondary carbonized briquette coal[J]. Journal of China Coal Society,2022,47(11):4055−4068.
    [11]
    蒋静宇,史孝宁,程远平,等. 急速卸压条件下构造煤体应力释放规律试验研究[J/OL]. 采矿与安全工程学报:1−12[3-12-12]. https://doi.org/10.13545/j.cnki.jmse.2023.0134.

    JIANG Jingyu,SHI Xiaoning,CHENG Yuanping,et al. Study on stress release law of tectonic coal under the condition of rapid unloading confining pressure [J/OL]. Journal of Mining and Safety Engineering:1−12[2023-12-12]. https://doi.org/10.13545/j.cnki.jmse.2023.0134.
    [12]
    张文清,石必明,穆朝民. 冲击载荷作用下煤岩破碎与耗能规律实验研究[J]. 采矿与安全工程学报,2016,33(2):375−380.

    ZHANG Wenqing,SHI Biming,MU Chaomin. Experimental research on failure and energy dissipation law of coal under impact load[J]. Journal of Mining and Safety Engineering,2016,33(2):375−380.
    [13]
    孔德中,杨胜利,张锦旺,等. 煤样强度特征的浆液量效应试验研究[J]. 采矿与安全工程学报,2015,32(3):420−425.

    KONG Dezhong,YANG Shengli,ZHANG Jinwang,et al. The experimental study of the grout quantity effect of strength properties of coal sample[J]. Journal of Mining and Safety Engineering,2015,32(3):420−425.
    [14]
    李祥春,张 良,赵艺良. 常规三轴压力下含瓦斯煤蠕变–渗流演化规律[J]. 工程科学与技术,2018,50(4):55−62.

    LI Xiangchun,ZHANG Liang,ZHAO Yiliang. Evolution of gas-filled coal creep-seepage under conventional triaxial compression[J]. Advanced Engineering Sciences,2018,50(4):55−62.
    [15]
    朱传奇,谢广祥,王 磊,等. 含水率及孔隙率对松软煤体强度特征影响的试验研究[J]. 采矿与安全工程学报,2017,34(3):601−607.

    ZHU Chuanqi,XIE Guangxiang,WANG Lei,et al. Experimental study on the influence of moisture content and porosity on soft coal strength characteristics[J]. Journal of Mining and Safety Engineering,2017,34(3):601−607.
    [16]
    朱传奇,李传明,殷志强,等. 不同含水率及黏土含量下松软煤体力学特征试验研究[J]. 岩石力学与工程学报,2017,36(S1):3258−3265.

    ZHU Chuanqi,LI Chuanming,YIN Zhiqiang,et al. Experimental study of soft coal mechanics characteristics with different moistures and clay contents[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(S1):3258−3265.
    [17]
    GE Lina,YI Fu,DU Changbo , et al. Deformation Localization and Damage constitutive model of raw coal and briquette coal under uniaxial compression[J]. Geofluids,2022,(1):1−12.
    [18]
    XIE Beijing,YAN Zheng,DU Yujing,et al. Determination of holmquist-johnson-cook constitutive parameters of coal:laboratory study and umerical simulation[J]. Processes,2019,7(6):1−20.
    [19]
    林海飞,刘思博,李树刚,等. 稳压条件下煤体稳定特性钻孔倾角效应的试验研究[J]. 采矿与安全工程学报,2021,38(3):575−583.

    LIN Haifei,LIU Sibo,LI Shugang,et al. Experimental study for the effects of drilling angle on coal mass stability under stable pressure conditions[J]. Journal of Mining and Safety Engineering,2021,38(3):575−583.
    [20]
    张天军,张 磊,李树刚,等. 含孔试样渐进性破坏的表面变形特征[J]. 煤炭学报,2017,42(10):2623−2630.

    ZHANG Tianjun,ZHANG Lei,LI Shugang,et al. Characteristics of the surface deformation of specimens with a hole during the progressive failure[J]. Journal of China Coal Society,2017,42(10):2623−2630.
    [21]
    程立朝,许 江,冯 丹,等. 黏结剂含量对含瓦斯煤剪切细观损伤力学特性影响的试验研究[J]. 岩土力学,2015,36(9):2467−2477.

    CHENG Lichao,XU Jiang,FENG Dan,et al. Effect of binder content on mesoscopic damage mechanical characteristics of gas-bearing coal subjected to shear load[J]. Rock and Soil Mechanics,2015,36(9):2467−2477.
    [22]
    NARA,Yoshitaka,KATO,Harumi,YONEDA,Tetsuro,et al. Determination of three-dimensional microcrack distribution and principal axes for granite using a polyhedral specimen[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(2):316−335. doi: 10.1016/j.ijrmms.2010.08.009
    [23]
    SUN Xiaoyuan,CHEN Gengyue,LI Jihui,et al. Propagation characteristics of ultrasonic P-wave velocity in artificial jointed coal briquettes[J]. Journal of Geophysics and Engineering,2020,17(5):827−837. doi: 10.1093/jge/gxaa032
    [24]
    王 刚,李胜鹏,刘义鑫,等. 真三轴下注水条件对煤体超声波传播特性影响规律的研究[J]. 岩石力学与工程学报,2022,41(11):2225−2239.

    WANG Gang,LI Shengpeng,LIU Yixin,et al. Influence of water injection on ultrasonic propagation characteristics of coal under true triaxial stress[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(11):2225−2239.
    [25]
    赵洪宝,王 涛,苏泊伊,等. 局部荷载下煤样内部微结构及表面裂隙演化规律[J]. 中国矿业大学学报,2020,49(2):227−237.

    ZHAO Hongbao,WANG Tao,SU Boyi,et al. Evolution law of internal microstructures and surface cracks of coal under local loading[J]. Journal of China University of Mining & Technology,2020,49(2):227−237.
    [26]
    王兆会,王家臣,王 凯. 综放开采顶煤冒放性预测模型的构建与应用[J]. 岩石力学与工程学报,2019,38(1):49−62.

    WANG Zhaohui,WANG Jiachen,WANG Kai. A model for top-coal cavability assessment and its application in longwall top-coal caving[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(1):49−62.
    [27]
    朱传奇,谢广祥,王 磊. 松软煤体波速演化规律与破坏程度量化指标[J]. 煤炭学报,2022,47(7):2609−2622.

    ZHU Chuanqi,XIE Guangxiang,WANG Lei. Wave velocity evolution law and quantitative index of damage degree of soft coal[J]. Journal of China Coal Society,2022,47(7):2609−2622.
    [28]
    赵洪宝,胡桂林,王飞虎,等. 局部荷载下含中心孔洞煤体裂纹扩展特征量化分析[J]. 煤炭学报,2017,42(4):860−870.

    ZHAO Hongbao,HU Guilin,WANG Feihu,et al. Quantitative analysis of crack expansion in specimens of coal having asingle pre-existing hole[J]. Journal of China Coal Society,2017,42(4):860−870.
    [29]
    王家臣. 极软厚煤层煤壁片帮与防治机理[J]. 煤炭学报,2007,32(8):785−788.

    WANG Jiachen. Mechanism of the rib spalling and the controlling in the very soft coal seam[J]. Journal of China Coal Society,2007,32(8):785−788.
    [30]
    吴学明,雷照源,文 杰. “三软”煤层工作面煤壁片帮防治试验研究[J]. 煤炭科学技术,2022,50(9):20−29.

    WU Xueming,LEI Zhaoyuan,WEN Jie. Experiment on prevention and control of coal wall spalling in three soft coal seam working face[J]. Coal Science and Technology,2022,50(9):20−29.
    [31]
    张艳博,王科学,姚旭龙,等. 基于波速场成像技术的岩石损伤评价研究[J]. 岩石力学与工程学报,2019,38(12):2404−2417.

    ZHANG Yanbo,WANG Kexue,YAO Xulong,et al. Rock damage evaluation based on wave velocity field imaging technology[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(12):2404−2417.
    [32]
    高保彬,李回贵,李 林,等. 同组软硬煤煤样声发射及分形特征研究[J]. 岩石力学与工程学报,2014,33(S2):3498−3504.

    GAO Baobin,LI Huigui,LI lin,et al. Study of acoustic emission and fractal characteristics of soft and hard coal samples with same group[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(S2):3498−3504.
    [33]
    张 琪,李祥春,LI Biao,等. 单轴压缩条件下煤体的宏-微观损伤破坏特征研究[J/OL]. 采矿与安全工程学报:1−14 [2023-11-10]. http://kns.cnki.net/kcms/detail/32.1760.TD.20231103.1138.004.html.

    ZHANG Qi,LI Xiangchun,LI Biao,et al. Research on the damage characteristics of macro and microscopic scales of a loaded coal under uniaxial compression[J]. Journal of Mining and Safety Engineering:1−14 [2023-11-10]. http://kns.cnki.net/kcms/detail/32.1760.TD.20231103.1138.004.html.
    [34]
    张国凯,李海波,夏 祥,等. 单轴加载条件下花岗岩声发射及波传播特性研究[J]. 岩石力学与工程学报,2017,36(5):1133−1144.

    ZHANG Guokai,LI Haibo,XIA Xiang,et al. Experiment study on acoustic emission and wave propagation in granite under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(5):1133−1144.
    [35]
    何玉红. 单轴荷载下砂岩波速特征与损伤演化规律研究[J]. 地下空间与工程学报,2016,12(1):44−48.

    HE Yuhong. Research on Ultrasonic Velocity Properties and Damage Development of Sandstone under Uniaxial Compression[J]. Chinese Journal of Underground Space and Engineering,2016,12(1):44−48.
    [36]
    李浩然,杨春和,刘玉刚,等. 单轴荷载作用下盐岩声波与声发射特征试验研究[J]. 岩石力学与工程学报,2014,33(10):2107−2116.

    LI Haoran,YANG Chunhe,LIU Yugang,et al. Experimental study of ultrasonic velocity and acoustic emission properties of salt rock under uniaxial compression load[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(10):2107−2116.
    [37]
    邓 涛,黄斌彩,杨林德. 致密岩石纵横波波速各向异性的比较研究[J]. 岩土力学,2007(3):493−498. doi: 10.3969/j.issn.1000-7598.2007.03.012

    DENG Tao,HUANG Bincai,YANG Linde. Anisotropy comparison of P wave and S wave velocity for compacted rocks[J]. Rock and Soil Mechanics,2007(3):493−498. doi: 10.3969/j.issn.1000-7598.2007.03.012
    [38]
    尹晓萌,晏鄂川,王鲁男,等. 水与微观结构对片岩波速各向异性特征的影响及其机制研究[J]. 岩土力学,2019,40(6):2221−2230,2238.

    YIN Xiaomeng,YAN Echuan,WANG Lunan,et al. Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism[J]. Rock and Soil Mechanics,2019,40(6):2221−2230,2238.
    [39]
    赵明阶,徐 蓉. 岩石损伤特性与强度的超声波速研究[J]. 岩土工程学报,2000(6):720−722. doi: 10.3321/j.issn:1000-4548.2000.06.018

    ZHAO Mingjie,XU Rong. The rock damage and strength study based on ultrasonic velocity[J]. Chinese Journal of Geotechnical Engineering,2000(6):720−722. doi: 10.3321/j.issn:1000-4548.2000.06.018
  • Cited by

    Periodical cited type(2)

    1. 赵鹏翔,刘莹莹,李树刚,刘妍群,刘云川,王捞捞,陆卫东. 含构造煤组合体受载裂隙动态演化规律. 煤田地质与勘探. 2025(03): 167-176 .
    2. 张凯,李志刚,张钟文,徐光黎,代云云,邵林. 不同含水率下变片理倾角云母石英片岩波速变化规律. 扬州大学学报(自然科学版). 2024(05): 9-15 .

    Other cited types(0)

Catalog

    Article views (106) PDF downloads (58) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return