Citation: | ZHANG Yuran,YAO Yuan,WANG Shu,et al. Cloud model for risk monitoring of mining electric traction rubber-wheel vehicles[J]. Coal Science and Technology,2024,52(S2):393−405. DOI: 10.12438/cst.2023-1339 |
With the emergence of the electric era, electric traction rubber-wheel vehicles are increasingly replacing traditional rubber wheel vehicles. However, one significant obstacle hindering their widespread adoption is the issue of risk control. In order to effectively monitor the risk status of electric traction rubber-wheel vehicles in mining environments, a comprehensive approach was developed by integrating relevant standards, literature research findings, and existing monitoring methods. This approach clarifies the path of risk evolution, selects appropriate monitoring indicators, determines low, medium and high-risk evaluation domains, and establishes a rating index system for assessing risks. By considering both the probability of triggering events along with their potential severity consequences, a weighted comprehensive cloud model has been constructed. Simulation results from various scenarios demonstrate that this model can intuitively and reasonably reflect the level of risk within vehicle systems while also allowing for comparisons between different scenarios. It is important to note that mine environments pose greater dangers compared to daily harsh environments. Sensitivity analysis on key indices reveals that gas concentration levels, battery temperature fluctuations and ambient temperature have a significant impact on overall system risk. Furthermore, when battery temperature interacts with gas concentration levels simultaneously it leads to an even more pronounced influence on system risk states. In the future, as operation monitoring data becomes standardized and increases in volume over time, additional risk factors will gradually be incorporated into the index system resulting in improvements to its applicability while optimizing performance.
[1] |
戴志晔. 煤矿井下无轨胶轮车的现状及应用[J]. 煤炭科学技术,2003,31(2):21−24. doi: 10.3969/j.issn.0253-2336.2003.02.007
DAI Zhiye. Status and application of trackless rubber tire vehicle in underground coal mine[J]. Coal Science and Technology,2003,31(2):21−24. doi: 10.3969/j.issn.0253-2336.2003.02.007
|
[2] |
阎立哲,李雲. 矿用井下防爆无轨胶轮车运输安全技术分析及发展趋势[J]. 山西煤炭,2019,39(3):85−88.
YAN Lizhe,LI Yun. Transportation safety technology analysis and development trend of mine explosion-proof trackless rubber-tired vehicle[J]. Shanxi Coal,2019,39(3):85−88.
|
[3] |
RAJA RAMAKRISHNAA B U,MURALI S. design and modelling of emergency power steering system for heavy vehicles[J]. Materials Today:Proceedings,2021,46:3876−3881.
|
[4] |
ZHAO Z,SI C. Dynamic analysis of steering system of the articulated vehicle in the heeled status[J]. Procedia Engineering,2011,16:540−545. doi: 10.1016/j.proeng.2011.08.1122
|
[5] |
陈奇,汪金成,QADEER Ahmed等. 基于模型的汽车电动助力转向系统故障诊断[J]. 汽车工程,2019,41(7):839−850.
CHEN Qi,WANG Jincheng,QADEER Ahmed,et al. Model-based fault diagnosis of automotive electric power steering system[J]. Automotive Engineering,2019,41(7):839−850.
|
[6] |
张雷,王子浩,孙逢春等. 四轮轮毂电机驱动智能电动汽车转向失效容错控制研究[J]. 机械工程学报,2021,57(20):141−152. doi: 10.3901/JME.2021.20.141
ZHANG Lei,WANG Zihao,SUN Fengchun,et al. Fault-tolerant control for intelligent four-wheel-independently-actuated electric vehicles under complete steer-by-wire system failure[J]. Journal of Mechanical Engineering,2021,57(20):141−152. doi: 10.3901/JME.2021.20.141
|
[7] |
王青松,孙金华,何理. 锂离子电池安全性特点及热模型研究[J]. 中国安全生产科学技术,2005,1(3):19−21. doi: 10.3969/j.issn.1673-193X.2005.03.005
WANG Qingsong,SUN Jinhua,HE Li. Research on the safety characteristics and thermal model for lithium-ion batteries[J]. Journal of Safety Science and Technology,2005,1(3):19−21. doi: 10.3969/j.issn.1673-193X.2005.03.005
|
[8] |
刘同宇,李师,付卫东,等. 大容量磷酸铁锂动力电池热失控预警策略研究[J]. 中国安全科学学报,2021,31(11):120−126.
LIU Tongyu,LI Shi,FU Weidong,et al. Study on early warning strategy of large LFP traction battery's thermal runaway[J]. China Safety Science Journal,2021,31(11):120−126.
|
[9] |
韦建龙. 矿用胶轮车全液压制动系统故障解析[J]. 煤矿机械,2018,39(8):161−162.
WEI Jianlong. Analysis of full hydraulic brake system failure for mining rubber wheel[J]. Coal Mine Machinery,2018,39(8):161−162.
|
[10] |
郝务云. 矿用胶轮车湿式多盘失压制动器及制动系统研究[D]. 徐州:中国矿业大学,2014:80−81.
HAO Wuyun. Study on the wet multiple disk pressure loss brake and braking system of rubber-tired vehicle used in mine[D]. Xuzhou:China University of Mining and Technology,2014:80−81.
|
[11] |
王渊,苗旺. 矿用胶轮车湿式制动器液压系统设计[J]. 煤矿安全,2019,50(6):121−124.
WANG Yuan,MIAO Wang. Design of hydraulic hystem for mine rubber wheel car based on wet brake[J]. Safety in Coal Mines,2019,50(6):121−124.
|
[12] |
董立亮,刘英林. 煤矿胶轮车工作制动器的动力学仿真分析[J]. 矿山机械,2014,42(3):29−32.
DONG Liliang,LIU Yinglin. Dynamic simulation and analysis on service brake of rubber-tired vehicle in collieries[J]. Mining & Processing Equipment,2014,42(3):29−32.
|
[13] |
ORCHANSKY D,WORRALL S,MACLEAN A,et al. Designing a user interface for improving the awareness of mining vehicle operators[C]. 13th International IEEE Conference on Intelligent Transportation Systems,2010:1435−1441.
|
[14] |
纪宇. 无轨胶轮车运输安全事故类型与防范措施研究[J]. 山东煤炭科技,2020,27(4):119−21. doi: 10.3969/j.issn.1005-2801.2020.04.045
JI Yu. Study on safety accident type and preventive measures of trackless rubber wheeler[J]. Shandong Coal Science and Technology,2020,27(4):119−21. doi: 10.3969/j.issn.1005-2801.2020.04.045
|
[15] |
苏晓倩,庄越,代华明. 新能源汽车燃爆风险与防控研究[J]. 中国安全科学学报,2018,28(5):92−98.
SU Xiaoqian,ZHUANG Yue,DAI Huaming. Study on risk of new energy vehicle burning-explosion and control measure[J]. China Safety Science Journal,2018,28(5):92−98.
|
[16] |
罗雪. 基于故障树分析的纯电动车驱动系统的功能安全研究[D]. 长春:吉林大学,2017:11−23.
LUO Xue. Research on functional safety of blade electric vehicles (BEV) drive system based on fault tree analysis[D]. Changchun:Jilin University,2017:11−23.
|
[17] |
杨洁,王国胤,刘群,等. 正态云模型研究回顾与展望[J]. 计算机学报,2018,41(3):724−744. doi: 10.11897/SP.J.1016.2018.00724
YANG Jie,WANG Guoyin,LIU Qun,et al. Retrospect and prospect of research of normal cloud model[J]. Chinese Journal of Computers,2018,41(3):724−744. doi: 10.11897/SP.J.1016.2018.00724
|
[18] |
王康,董四辉. 轨道交通车辆系统安全评价云模型[J]. 中国安全科学学报,2019,29(9):51−56.
WANG Kang,DONG Sihui. Research on cloud model for safety evaluation of rail transit vehicle system[J]. China Safety Science Journal,2019,29(9):51−56.
|
[19] |
刘嘉豪,余杨,张振兴,等. 二维云模型和贝叶斯网络的立管风险评估方法[J]. 中国安全科学学报,2022,32(5):147−154.
LIU Jiahao,YU Yang,ZHANG Zhenxing,et al. Risk assessment method of risers based on two-dimensional cloud model and BN[J]. China Safety Science Journal,2022,32(5):147−154.
|
[20] |
熊钰,孔德中,杨胜利,等. 大倾角工作面煤壁稳定性的云模型综合辨识[J]. 中国安全科学学报,2022,32(3):144−151.
XIONG Yu,KONG Dezhong,YANG Shengli,et al. Cloud model identification of coal face stability in steeply inclined working faces[J]. China Safety Science Journal,2022,32(3):144−151.
|
[21] |
李冰晶. 煤矿用锂离子蓄电池性能测试与评价[J]. 煤炭工程,2018,50(11):136−140.
LI Bingjing. Performance test and evaluation of lithium ion battery for coal mine[J]. Coal Engineering,2018,50(11):136−140.
|
[22] |
黄峥,秦鹏,石晗,等. 过热条件下86 Ah磷酸铁锂电池热失控行为研究[J]. 高电压技术,2022,48(3):1185−1191.
HUANG Zheng,QIN Peng,SHI Han,et al. Study on thermal runaway behavior of 86 Ah lithium iron phosphate battery under overheat condition[J]. High Voltage Engineering,2022,48(3):1185−1191.
|
[23] |
陈泽彦,高永辉,李代源,等. 磷酸铁锂模组过充失效分析[J]. 环境技术,2022,40(3):85−89.
CHEN Zeyan,GAO Yonghui,LI Daiyuan,et al. Analysis of overcharge failure of lithium iron phosphate module[J]. Environmental Technology,40(3):85−89.
|
[24] |
GUO R,LU L,OUYANG M,et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports,2016,6:30248. doi: 10.1038/srep30248.
|
[25] |
GB/T 32960.3—2016,电动汽车远程服务与管理系统技术规范 第3部分:通信协议及数据格式[S].
|
[26] |
Q/GDTJ 1—2019,湿式制动器[S].
|
[27] |
NB/T 10756—2021,煤矿在用无轨胶轮车安全检测检验规范[S].
|
[28] |
朱鸿章,吴传平,周天念,等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术,2022,11(1):201−210.
ZHU Hongzhang,WU Chuanping,ZHOU Tiannian,et al. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology,2022,11(1):201−210.
|
[29] |
梅文昕,段强领,王青山,等. 大型磷酸铁锂电池高温热失控模拟研究[J]. 储能科学与技术,2021,10(1):202−209.
MEI Wenxin,DUAN Qiangling,WANG Qingshan,et al. Thermal runaway simulation of large-scale lithium iron phosphate battery at elevated temperatures[J]. Energy Storage Science and Technology,2021,10(1):202−209.
|
[30] |
龚子涵,周霄辉,孙均利,等. 磷酸铁锂电池热失控行为研究进展[J]. 消防科学与技术,2022,41(10):1354−1358. doi: 10.3969/j.issn.1009-0029.2022.10.007
GONG Zihan,ZHOU Xiaohui,SUN Junli,et al. A review on thermal runaway behavior of lithium-ion phosphate battery[J]. Fire Science and Technology,2022,41(10):1354−1358. doi: 10.3969/j.issn.1009-0029.2022.10.007
|
[31] |
程志翔,曹伟,户波,等. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性[J]. 储能科学与技术,2023,12(3):923−933.
CHENG Zhixiang,CAO Wei,HU Bo,et al. Thermal runaway and explosion propagation characteristics of large lithium iron phosphate battery for energy storage station[J]. Energy Storage Science and Technology,2023,12(3):923−933.
|
[32] |
刘伯峥,王静波,曾涛,等. 磷酸铁锂电池寿命初期与末期安全性差异[J]. 化工学报,2022,73(12):5555−5563.
LIU Bozheng,WANG Jingbo,ZENG Tao,et al. Safety differences of LiFePO4 batteries at the beginning of life and end of life[J]. CIESC Journal,2022,73(12):5555−5563.
|
[33] |
许涛,李干,胡家佳. 磷酸铁锂锂离子电池模组过放电失效分析[J]. 电池,2017,47(4):226−229.
XU Tao,LI Gan,HU Jiajia. Over-discharge failure analysis of lithium iron phosphate Li-ion battery module[J]. Battery Bimonthly,2017,47(4):226−229.
|
[34] |
周洋捷,王震坡,洪吉超,等. 新能源汽车动力电池“过充电-热失控”安全防控技术研究综述[J]. 机械工程学报,2022,58(10):112−35. doi: 10.3901/JME.2022.10.112
ZHOU Yangjie,WANG Zhenpo,HONG Jichao,et al. Review of overcharge-to-thermal runaway and the control strategy for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering,2022,58(10):112−35. doi: 10.3901/JME.2022.10.112
|
[35] |
DB32/T 4380—2022 在运电动汽车锂离子动力电池系统技术要求及现场检测方法[S].
|
[36] |
GB/T3836.1—2021 爆炸性环境第1部分:设备通用要求[S].
|
[37] |
DB32/T 4381—2022 在运电动汽车驱动电机系统检测方法[S].
|
[38] |
国家安全生产监督管理总局,国家煤矿安全监察局. 煤矿安全规程[M]. 北京:煤炭工业出版社,2016:75−76.
|
[39] |
王绥军,傅凯,徐斌,等. 磷酸铁锂动力电池寿命中期低温安全性能[J]. 电源技术,2017,41(3):364−366,98. doi: 10.3969/j.issn.1002-087X.2017.03.009
WANG Suijun,FU Kai,XU Bin,et al. Low-temperature safety performance of middle-life lithium iron phosphate batteries[J]. Chinese Journal of Power Sources,2017,41(3):364−366,98. doi: 10.3969/j.issn.1002-087X.2017.03.009
|
[40] |
梁力,邢观华,吴凤元. 基于云理论的评估模型和方法[J]. 东北大学学报(自然科学版),2019,40(6):881−885.
LIANG Li,XING Guanhua,WU Fengyuan. The evaluation model and method based on cloud theory[J]. Journal of Northeastern University(Natural Science),2019,40(6):881−885.
|
[41] |
王坚强,刘淘. 基于综合云的不确定语言多准则群决策方法[J]. 控制与决策,2012,27(8):1185−1190.
WANG Jianqiang,LIU Tao. Uncertain linguistic multi-criteria group decision-making approach based on integrated cloud[J]. Control and Decision,2012,27(8):1185−1190.
|
[42] |
廖列法,黎晨,孟祥茂. 基于欧氏空间相似度的云模型协同过滤算法[J]. 计算机工程与科学,2015,37(10):1977−1982. doi: 10.3969/j.issn.1007-130X.2015.10.027
LIAO Liefa,LI Chen,MENG Xiangmao. A cloud model based collaborative filtering recommendation algorithm using Euclidean distance similarity measurement[J]. Computer Engineering & Science,2015,37(10):1977−1982. doi: 10.3969/j.issn.1007-130X.2015.10.027
|
[43] |
龚艳冰. 不确定综合评价中的云模型理论方法与应用[M]. 南京:河海大学出版社,2021:96−101.
|