Advance Search
DENG Ze,WANG Hongyan,JIANG Zhenxue,et al. Influence of deep coal pore and fracture structure on occurrence of coalbed methane: a case study of Daning-Jixian Block in eastern margin of Ordos Basin[J]. Coal Science and Technology,2024,52(8):106−123. DOI: 10.12438/cst.2023-1334
Citation: DENG Ze,WANG Hongyan,JIANG Zhenxue,et al. Influence of deep coal pore and fracture structure on occurrence of coalbed methane: a case study of Daning-Jixian Block in eastern margin of Ordos Basin[J]. Coal Science and Technology,2024,52(8):106−123. DOI: 10.12438/cst.2023-1334

Influence of deep coal pore and fracture structure on occurrence of coalbed methane: a case study of Daning-Jixian Block in eastern margin of Ordos Basin

Funds: 

China Petroleum Exploration and Production Branch Technology Support Project (2022KT1401); PetroChina Company Limited Science Research and Technology Development Support Project (2021DJ2302); PetroChina Exploration and Development Research Institute Technology Project (2023ZZ18-01)

More Information
  • Received Date: September 16, 2023
  • Accepted Date: September 17, 2023
  • Available Online: July 24, 2024
  • The pore-fracture structure of deep coal reservoir is of great significance to the evaluation and exploration of deep coalbed methane resource potential. this work takes the 5 coal and rock samples from the DJ57 Benxi Formation in Daning-Jixian Block, east margin of Ordos Basin are selected as the research object. On the basis of coal rock and coal quality parameter testing, gas adsorption method, high pressure mercury injection method and micron CT scanning and other testing methods are adopted to conduct full-scale quantitative characterization of nano-scale pore and micron scale cracks in the pore and fissure structure of coal reservoir, and comprehensively evaluate the pore and fissure structure characteristics of different scales. Combined with permeability and methane isothermal adsorption experiments, the influence of micro-porosity and fissure on the occurrence and migration of coalbed methane in deep coal reservoirs was discussed. The results show that the multi-scale quantitative characterization of deep coal reservoir pores and fractures is based on a variety of pore characterization methods, and the pore and fracture volume distribution type is mainly U-shaped, showing a bimodal coexistence of micro-pores and micro-fractures, mainly concentrated in in 0.3-1.5 nm and > 100 μm. Among them, micropores (<2 nm), mesoporous (2−50 nm), macroporous (50 nm−10 μm) and microfractures (>10 μm) accounted for 80.18%,6.70%,1.65% and 11.47% of the total pore crack volume, respectively. With the development of micropores, the adsorbed gas tends to increase, and micropores can provide a large number of adsorption sites for deep coalbed methane adsorption and occurrence. With the development of micro-fractures, the free gas volume tends to increase. Micro-fractures can provide a large amount of storage space and provide space conditions for deep coalbed methane enrichment. In addition, microcracks are interconnected in three-dimensional space, forming a network structure with strong connectivity. With the development of micro-fractures, the permeability of coal reservoir increases, and micro-fractures enhance the seepage capacity of coalbed methane. The adsorption capacity and development potential of deep coalbed methane are controlled by the development characteristics of nano-scale pores and micro-scale fractures respectively.

  • [1]
    徐凤银,肖芝华,陈东,等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术,2019,47(10):205−215.

    XU Fengyin,XIAO Zhihua,CHEN Dong,et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology,2019,47(10):205−215.
    [2]
    周德华,陈刚,陈贞龙,等. 中国深部煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业,2022,42(6):43−51. doi: 10.3787/j.issn.1000-0976.2022.06.004

    ZHOU Dehua,CHEN Gang,CHEN Zhenlong,et al. Exploration and development progress,key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry,2022,42(6):43−51. doi: 10.3787/j.issn.1000-0976.2022.06.004
    [3]
    徐凤银,王成旺,熊先钺,等. 深部(层)煤层气成藏模式与关键技术对策:以鄂尔多斯盆地东缘为例[J]. 中国海上油气,2022,34(4):30−42. doi: 10.11935/j.issn.1673-1506.2022.04.003

    XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Deep(layer) coalbed methane reservoir forming modes and key technical countermeasures:taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas,2022,34(4):30−42. doi: 10.11935/j.issn.1673-1506.2022.04.003
    [4]
    孙钦平,赵群,姜馨淳,等. 新形势下中国煤层气勘探开发前景与对策思考[J]. 煤炭学报,2021,46(1):65−76.

    SUN Qinping,ZHAO Qun,JIANU Xinchun,et al. Prospects and strategies of CBM exploration and development in China under the new situation[J]. Journal of China Coal Society,2021,46(1):65−76.
    [5]
    徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14. doi: 10.12363/issn.1001-1986.21.12.0736

    XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14. doi: 10.12363/issn.1001-1986.21.12.0736
    [6]
    闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区”的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439.

    YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristicsof Daji area in east Ordos Basin and its control overthe high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.
    [7]
    聂志宏,时小松,孙伟,等. 大宁−吉县区块深部煤层气生产特征与开发技术对策[J]. 煤田地质与勘探,2022,50(3):193−200. doi: 10.12363/issn.1001-1986.21.12.0818

    NIE Zhihong,SHI Xiaosong,SUN Wei,et al. Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration,2022,50(3):193−200. doi: 10.12363/issn.1001-1986.21.12.0818
    [8]
    李曙光,王成旺,王红娜,等. 大宁–吉县区块深部煤层气成藏特征及有利区评价[J]. 煤田地质与勘探,2022,50(9):1−9. doi: 10.12363/issn.1001-1986.22.01.0059

    LI Shuguang,WANG Chengwang,WANG Hongna,et al. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in Daning-Jixian block[J]. Coal Geology & Exploration,2022,50(9):1−9. doi: 10.12363/issn.1001-1986.22.01.0059
    [9]
    吉小峰. 煤中纳米孔隙发育特征及其对气体运移的控制机理研究[D]. 焦作:河南理工大学,2018:45–55.

    JI Xiaofeng. Development characteristics of nanopores in coal and its controlling mechanism on gas migration[D]. Jiaozou:Henan Polytechnic University,2018:45–55.
    [10]
    刘大锰,李振涛,蔡益栋. 煤储层孔–裂隙非均质性及其地质影响因素研究进展[J]. 煤炭科学技术,2015,43(2):10−15.

    LIU Dameng,LI Zhentao,CAI Yidong. Study progress on pore-crack heterogeneity and geological influence factors of coal reservoir[J]. Coal Science and Technology,2015,43(2):10−15.
    [11]
    GOU Q,XU S,HAO F,et al. Full-scale pores and micro-fractures characterization using FE–SEM,gas adsorption,nano-CT and micro-CT:a case study of the Silurian Longmaxi Formation shale in the Fuling area,SICHUAN Basin,China[J]. Fuel,2019,253:167−179. doi: 10.1016/j.fuel.2019.04.116
    [12]
    高彬,黄华州,宁娜,等. 构造煤纳米级孔隙特征及其对含气性的影响[J]. 煤田地质与勘探,2018,46(5):182−187. doi: 10.3969/j.issn.1001-1986.2018.05.028

    GAO Bin,HUANU Huazhou,NINU Na,et al. Pore size characteristics of tectonic coal and its influence on gas bcaring properties[J]. Coal Geology & Exploration,2018,46(5):182−187. doi: 10.3969/j.issn.1001-1986.2018.05.028
    [13]
    CAI Y ,LIU D ,PAN Z ,et al. Investigating the effects of seepage-pores and fractures on coal permeability by fractal analysis[J]. Transport in Porous Media,2016,111(2),479−497.
    [14]
    ZHANG J,LI X,WEI Q,et al. Characterization of full-sized pore structure and fractal characteristics of marine-continental transitional Longtan Formation shale of SICHUAN Basin,South China[J]. Energy Fuels,2017,31(10),10490−10504.
    [15]
    WANG T,TIAN F,DENG Z,et al. Pore structure and fractal characteristics of Wufeng–Longmaxi formation shale in northern Yunnan–Guizhou,China[J]. Frontiers in Earth Science,2023,10:998958.
    [16]
    孙家广,赵贤正,桑树勋,等. 基于光学显微观测的煤层裂隙发育特征、成因及其意义:以沁水盆地南部3#煤层为例[J]. 断块油气田,2016,23(6):738−744.

    SUN Jiaguang,ZHAO Xianzheng,SANG Shuxun,et al. Development characteristics,origins and significance of coal seam fractures under optical microscope:taking coal seam 3# in southern Qinshui Basin as an example[J]. Fault-Block Oil & Gas Field,2016,23(6):738−744.
    [17]
    毛潇潇,赵迪斐,卢晨刚,等. 氩离子抛光–场发射扫描电镜在煤纳米孔研究中的应用[J]. 电子显微学报,2016,35(1):90−96. doi: 10.3969/j.issn.1000-6281.2016.01.015

    MAO Xiaoxiao,ZHAO Difei1,LU Chengang,et al. The application of argon ion polishing-field emission scanning electron microscopy to the research on coal nanopores[J]. Journal of Chinese Electron Microscopy Society,2016,35(1):90−96. doi: 10.3969/j.issn.1000-6281.2016.01.015
    [18]
    王朋飞,吕鹏,姜振学,等. 中国海陆相页岩有机质孔隙发育特征对比:基于聚焦离子束氦离子显微镜(FIB–HIM)技术[J]. 石油实验地质 2018,40(5):739−748.

    WANG Pengfei1,LU Peng,JIANG Zhenxue,et al. Comparison of organic matter pores of marine and continental facies shale in China:based on Focused Ion Beam Helium Ion Microscopy (FIB–HIM). Petroleum Geology & Experiment,2018,40(5):739−748.
    [19]
    赵迪斐,郭英海,毛潇潇,等. 基于压汞、吸附与FESEM的无烟煤微纳米孔隙特征[J]. 煤炭学报,2017,42(6):1517−1526.

    ZHAO Difei,GUO Yinghai,MAO Xiaoxiao,et al. Micro-nanopore characteristics of anthracite based on mercury injection,nitrogen adsorption and FE–SEM[J]. Journal of China Coal Society,2017,42(6):1517−1526.
    [20]
    LI Z,LIU D,CAI Y,et al. Adsorption pore structure and its fractal characteristics of coals by N2 adsorption/desorption and FESEM image analyses[J]. Fuel,2019,257,116031.
    [21]
    JIAO K. ,YAO S. ,LIU C. ,et al. The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM–FIB and image processing:An example from the lower Silurian LONGMAXI Shale,upper Yangtze region,China[J]. International Journal of Coal Geology,2014,128(3):1–11.
    [22]
    李阳,张玉贵,张浪,等. 基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征[J]. 煤炭学报,2019,44(4):1188−1196.

    LI Yang,ZHANG Yugui,ZHANG Lang,et al. Characterization on pore structure of tectonic coals based on the method of mercury intrusion,carbon dioxide adsorption adsorption and nitrogen adsorption[J]. Journal of China Coal Society,2019,44(4):1188−1196.
    [23]
    林海飞,卜婧婷,严敏,等. 中低阶煤孔隙结构特征的氮吸附法和压汞法联合分析[J]. 西安科技大学学报,2019,39(1):1−8.

    LIN Haifei,BU Jingting,YAN Min,et al. Joint analysis of pore structure characteristics of middle and low rank coal with nitrogen adsorption and mercury intrusion method[J]. Journal of Xi’an University of Science and Technology,2019,39(1):1−8.
    [24]
    王凯,乔鹏,王壮森,等. 基于二氧化碳和液氮吸附、高压压汞和低场核磁共振的煤岩多尺度孔径表征[J]. 中国矿业,2017,26(4):146−152. doi: 10.3969/j.issn.1004-4051.2017.04.029

    WANG Kai,QIAO Peng,WANG Zhuangsen,et al. Multiple scale pore size characterization of coal based on carbon dioxide and liquid nitrogen adsorption,high-pressure mercury intrusion and low field nuclear magnetic resonances[J]. China Mining magazine,2017,26(4):146−152. doi: 10.3969/j.issn.1004-4051.2017.04.029
    [25]
    邓泽,王红岩,姜振学,等. 页岩和煤岩的孔隙结构差异及其天然气运移机理[J]. 天然气工业,2022,42(11):37−49.

    DENG Ze,WANG Hongyan,JIANG Zhenxue,et al. Pore structure differences between shale and coal and their gas migration mechanisms[J]. Natural Gas Industry,2022,42(11):37−49.
    [26]
    PANT L M,HUANG H,SECANELL M,et al. Multi scale characterization of coal structure for mass transport[J]. Fuel,2015,159(1):315−323.
    [27]
    CLARKSON C R,SOLANO N,BUSTIN R M,et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS,gas adsorption,and mercury intrusion[J]. Fuel,2013,103:606−616. doi: 10.1016/j.fuel.2012.06.119
    [28]
    王刚,沈俊男,褚翔宇,等. 基于CT三维重建的高阶煤孔裂隙结构综合表征和分析[J]. 煤炭学报,2017(8):2075−2081.

    WAND Gang,SHEN Junnan,CHU Xiangyu,et al. Comprchcnsive characterization and analysis of pore fracture structure of high-order coal based on three-dimensional reconstruction of CT[J]. Journal of China Coal Society,2017(8):2075−2081.
    [29]
    LI S,TANG D,XU H,et al. Advanced characterization of physical properties of coals with different coal structures by nuclear magneticr esonance and X–Ray computed tomography[J]. Computers & Geosciences,2012,48:220−227.
    [30]
    LIU S,SANG S,WANG G,et al. FIB–SEM and X–Ray CT characterization of interconnected pores in high-rank coal formed from regional metamorphism[J]. Journal of Petroleum Science and Engineering,2017,148:21−31. doi: 10.1016/j.petrol.2016.10.006
    [31]
    PAN J N,ZHU H T,HOU Q L,et al. Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy[J]. Fuel,2015:139,94−101.
    [32]
    WANG T,TIAN F,DENG Z,et al. The characteristic development of micropores in deep coal and Its relationship with adsorption capacity on the eastern margin of the ORDOS Basin,China[J]. Minerals,2023,13(3):302.
    [33]
    ZHANG K,CHENG Y,LI W,et al. Microcrystalline characterization and morphological structure of tectonic anthracite using XRD,liquid nitrogen adsorption,mercury porosimetry,and micro-CT[J]. Energy Fuels,2019,33(11):10844−10851. doi: 10.1021/acs.energyfuels.9b02756
    [34]
    YANG F,NING Z,WANG Q,et al. Pore structure characteristics of lower Silurian shales in the southern SICHUAN Basin,China:insights to pore development and gas storage mechanism[J]. Marine and Petroleum Geology,2016,156:12−24.
    [35]
    MA Y,PAN Z,ZHONG N,et al. Experimental study of anisotropic gas permeability and its relationship with fracture structure of Longmaxi shales,SICHUAN Basin,China[J]. Fuel,2016,180:106−115. doi: 10.1016/j.fuel.2016.04.029
    [36]
    WANG P,JIANG Z,CHEN L,et al. Pore structure characterization for the Longmaxi and Niutitang shales in the Upper Yangtze platform,South China:evidence from focused ion beam–He ion microscopy,nano-computerized tomography and gas adsorption analysis[J]. Marine and Petroleum Geology,2016,77:1323−1337. doi: 10.1016/j.marpetgeo.2016.09.001
    [37]
    王阳. 上扬子区龙马溪组页岩微孔缝结构演化与页岩气赋存[D]. 徐州:中国矿业大学,2017:75–82.

    WANG Yang. Nanoscale pore structure evolution and shale gas occurrence of Longmaxi formation in upper Yangtze area [D]. Xuzhou:China University of Mining and Technology,2017:75–82.
    [38]
    范楠. 煤孔隙结构多尺度表征及其对瓦斯运移特性影响的实验研究[D]. 阜新:辽宁工程技术大学,2021:35–42.

    FAN Nan. Experimental study on multi-scale pore structure characterization of coal and its effect on gas migration characteristics [D]. Fuxin:Liaoning Technical University,2021:35–42.
    [39]
    ZHANG S,WU C,LIU H. Comprehensive characteristics of pore structure and factors influencing micropore development in the Laochang mining area,eastern Yunnan,China[J]. Journal of Petroleum Science and Engineering,2020,190:107090. doi: 10.1016/j.petrol.2020.107090
    [40]
    SONG D,JI X,LI Y,et al. Heterogeneous development of micropores in medium-high rank coal and its relationship with adsorption capacity[J]. International Journal of Coal Geology,2020,226:103497. doi: 10.1016/j.coal.2020.103497
    [41]
    MOU P,PAN J,NIU Q,et al. Coal Pores:methods,types,and characteristics[J]. Energy And Fuels,2021,35(9):7467−7484. doi: 10.1021/acs.energyfuels.1c00344
    [42]
    孙斌,杨敏芳,杨青,等. 准噶尔盆地深部煤层气赋存状态分析[J]. 煤炭学报,2017,42(S1):195−202.

    SUN Bin,YANG Minfang,YANG Qing,et al. Analysis on occurrence state of deep coalbed methane in Junggar basin[J]. Journal of China Coal Society,2017,42(S1):195−202.
    [43]
    高丽军,谢英刚,潘新志,等. 临兴深部煤层气含气性及开发地质模式分析[J]. 煤炭学报,2018,43(6):1634−1640.

    GAO Lijun,XIE Yinggang,PAN Xinzhi,et al. Gas analysis of deep coalbed methane and its geological model for development in Linxing Block[J]. Journal of China Coal Society,2018,43(6):1634−1640.
    [44]
    陈刚,李五忠. 鄂尔多斯盆地深部煤层气吸附能力的影响因素及规律[J]. 天然气工业,2011,31(10):47−49.

    CHEN Gang,LI Wuzhong. Influencing factors and patterns of deep coalbed methane adsorption capacity in Ordos Basin[J]. Natural Gas Industry,2011,31(10):47−49.
    [45]
    邵长奎. 煤储层开发三相态含气量动态数值模拟研究[D]. 徐州:中国矿业大学,2014.

    SHAO Changkui. Numerical simulation of three phase gas content dynamic changes in recovery of coal reservoirs[D]. Xuzhou:China University of Mining and Technology,2014.
    [46]
    申建,杜磊,秦勇,等. 深部低阶煤三相态含气量建模及勘探启示:以准噶尔盆地侏罗纪煤层为例[J]. 天然气工业,2015,35(3):30−35.

    SHEN Jian,DU Lei,QIN Yong,et al. Three-phase gas content model of deep low-rank coals and its implication for CBM exploration:a case study from the Jurassic Basin[J]. Natural Gas Industry,2015,35(3):30−35.
    [47]
    陈刚,胡宗全. 鄂尔多斯盆地东南缘延川南深部煤层气富集高产模式探讨[J]. 煤炭学报,2018,43(6):1572−1579.

    CHEN Gang,HU Zongquan. Discussion on the model of enrichment and high yield of deep coalbed methane in Yanchuannan area at Southeastern Ordos Basin[J]. Journal of China Coal Society,2018,43(6):1572−1579.
    [48]
    PENG N,HE S,YANG R,et al. Organic nanopore structure and fractal characteristics of Wufeng and lower member of Longmaxi shales in southeastern Sichuan,China[J]. Marine and Petroleum Geology,2019,103:456−472. doi: 10.1016/j.marpetgeo.2019.03.017
    [49]
    姜振学,唐相路,李卓,等. 川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J]. 地学前缘,2016,23(2):126−134.

    JIANG Z,TANG X,LI Z,et al. The whole-aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the southeastern Sichuan Basin[J]. Earth Sci Front,2016,23(2):126−134.
    [50]
    LI Y,WANG Z,PAN Z,et al. Pore structure and its fractal dimensions of transitional shale:a crosssection from east margin of the ORDOS Basin,China[J]. Fuel,2019,241:417−431. doi: 10.1016/j.fuel.2018.12.066
    [51]
    WANG T,DENG Z,HU H,et al. Pore structure and fractal characteristics of transitional shales with different lithofacies from the eastern margin of the Ordos Basin[J]. Energy Sci Eng,2023,1−22.

Catalog

    Article views (209) PDF downloads (79) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return