Citation: | DING Yang,TANG Yuanzhuo,LI Shugang,et al. Numerical simulation of well location deployment scheme for CO2 sequestration in old goaf[J]. Coal Science and Technology,2024,52(S2):131−141. DOI: 10.12438/cst.2023-1303 |
As a potential CO2 storage geologic body, the old goaf has great storage potential. In order to clarify the distribution characteristics and storage capacity of CO2 injection in the old goaf under different monitoring well deployment schemes, based on the actual geological conditions of the experimental coal mine in Huangling Mining area, the numerical simulation of CO2 injection in the old goaf was carried out by using COMSOL software on the basis of considering the permeability heterogeneity and the differences in the adsorption capacity of coal and rock in the old goaf. The results show that the distribution of CO2 in the old goaf is closer to the floor, the distribution range is wider and the concentration is higher. When the depth of the injection well reaches 65m, the CO2 distribution in the low permeability area in the upper part of the old goaf increases significantly, while the trend distribution decreases significantly, and the total and free CO2 storage reach the maximum value, which are 7.594×106 kg and 3.569×106 kg, respectively. When the depth of injection well is 95 m, the storage of adsorbed CO2 is the largest, and the proportion of total storage is the highest, which are 4.37×106 kg and 63.52%, respectively. With the increase of the number of monitoring Wells, the distribution range of CO2 in the strike of the old goaf is significantly expanded. In addition, by in creasing the number of monitoring Wells and adopting symmetrical deployment, the range of coal and rock mass in the old goaf participating in adsorption storage is expanded, thus increasing the proportion of CO2 sealed in the old goaf and adsorbed storage. Under this arrangement, the CO2 sealed stock is more than 1.82 times that of the single monitoring well. The proportion of CO2 storage in adsorbed state increased from 53.22% to 72.693%. Based on the analysis of the distribution characteristics and sealing stock, the longitudinal injection points and monitoring well deployment methods which are conducive to improving the CO2 sealing stock in the old goaf are obtained, which can provide an important reference for the CO2 sealing well deployment scheme in the old goaf.
[1] |
MALLAPATY S. How China could be carbon neutral by mid-century[J]. Nature,2020,586(7830):482−483. doi: 10.1038/d41586-020-02927-9
|
[2] |
孙腾民,刘世奇,汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术,2021,49(11):10−20.
SUN Tengmin,LIU Shiqi,WANG Tao. Research advances on evaluation of CO2 geological storage potential in China[J]. Coal Science and Technology,2021,49(11):10−20.
|
[3] |
谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211.
XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.
|
[4] |
AMINU M D,ALI NABAVI S,ROCHELLE C A,et al. A review of developments in carbon dioxide storage[J]. Applied Energy,2017,208:1389−1419. doi: 10.1016/j.apenergy.2017.09.015
|
[5] |
刘操,赵春辉,钟福平,等. 深部煤层CO2地质封存量化评估及案例研究[J]. 煤炭科学技术,2024,52(S1):288−298. doi: 10.12438/cst.2023-0889
LIU Cao,ZHAO Chunhui,ZHONG Fuping,et al. Quantitative evaluation and case study of CO2 geological sequestration in deep coal seams[J]. Coal Science and Technology,2024,52(S1):288−298. doi: 10.12438/cst.2023-0889
|
[6] |
王根锁,刘宏磊,武强,等. 碳中和背景下废弃矿山环境正效应资源化开发利用[J]. 煤炭科学技术,2022,50(6):321−328.
WANG Gensuo,LIU Honglei,WU Qiang,et al. Resource development and utilization of positive environmental impacts of abandoned mines under carbon neutrality[J]. Coal Science and Technology,2022,50(6):321−328.
|
[7] |
李树刚,张静非,尚建选,等. 双碳目标下煤气同采技术体系构想及内涵[J]. 煤炭学报,2022,47(4):1416−1429.
LI Shugang,ZHANG Jingfei,SHANG Jianxuan,et al. Conception and connotation of coal and gas co-extraction technology system under the goal of carbon peak and carbon neutrality[J]. Journal of China Coal Society,2022,47(4):1416−1429.
|
[8] |
谢和平,高明忠,刘见中,等. 煤矿地下空间容量估算及开发利用研究[J]. 煤炭学报,2018,43(6):1487−1503.
XIE Heping,GAO Mingzhong,LIU Jianzhong,et al. Research on exploitation and volume estimation of underground space in coal mines[J]. Journal of China Coal Society,2018,43(6):1487−1503.
|
[9] |
袁亮. 我国煤炭资源高效回收及节能战略研究[J]. 中国矿业大学学报(社会科学版),2018,20(1):3−12. doi: 10.3969/j.issn.1009-105x.2018.01.001
YUAN Liang. Strategies of high efficiency recovery and energy saving for coal resources in China[J]. Journal of China University of Mining & Technology (Social Sciences),2018,20(1):3−12. doi: 10.3969/j.issn.1009-105x.2018.01.001
|
[10] |
许雅琴,张可霓,王洋. 基于数值模拟探讨提高咸水层CO2封存注入率的途径[J]. 岩土力学,2012,33(12):3825−3832.
XU Yaqin,ZHANG Keni,WANG Yang. Numerical investigation for enhancing injectivity of CO2 storage in saline aquifers[J]. Rock and Soil Mechanics,2012,33(12):3825−3832.
|
[11] |
谢健,张可霓,王永胜,等. 鄂尔多斯深部咸水层CO2地质封存效果评价[J]. 岩土力学,2016,37(1):166−174,184.
XIE Jian,ZHANG Keni,WANG Yongsheng,et al. Performance assessment of CO2 geological storage in deep saline aquifers in Ordos Basin,China[J]. Rock and Soil Mechanics,2016,37(1):166−174,184.
|
[12] |
MI Z X,WANG F G,YANG Z J,et al. Numerical simulation of the influence of geological CO2 storage on the hydrodynamic field of a reservoir[J]. Geofluids,2019,2019(1):1853274.
|
[13] |
RAZA A,GHOLAMI R,REZAEE R,et al. Suitability of depleted gas reservoirs for geological CO2 storage:A simulation study[J]. Greenhouse Gases:Science and Technology,2018,8(5):876−897. doi: 10.1002/ghg.1802
|
[14] |
SUN Y,LIN R Y,PAN Y,et al. Experimental analysis and numerical simulation of the stability of geological storage of CO2:A case study of transforming a depleted gas reservoir into a carbon sink carrier[J]. ACS Omega,2021,6(50):34832−34841. doi: 10.1021/acsomega.1c05475
|
[15] |
AL ALI A. Numerical analysis for relative permeability hysteresis models in reservoir simulation of CO2 trapping in underground carbon storage[C]// International Petroleum Technology Conference. Riyadh: IPTC, 2022: 22239.
|
[16] |
WANG G D,HOU Z W,ZHAN L,et al. Integrated numerical simulation of CO2 flooding,heat recovery and storage in high temperature reservoir[J]. Petroleum Science and Technology,2023,41(12):1250−1271. doi: 10.1080/10916466.2022.2092502
|
[17] |
胥蕊娜,吉天成,陆韬杰,等. 二氧化碳地质封存与增产油/气/热利用技术中关键热质传递问题研究进展[J]. 清华大学学报(自然科学版),2022,62(4):634−654.
XU Ruina,JI Tiancheng,LU Taojie,et al. Research progress on heat and mass transfer in carbon geological storage and enhanced oil/gas/geothermal recovery technology[J]. Journal of Tsinghua University (Science and Technology),2022,62(4):634−654.
|
[18] |
司俊鸿,程根银,朱建芳,等. 采空区非均质多孔介质渗透特性三维建模及应用[J]. 煤炭科学技术,2019,47(5):220−224.
SI Junhong,CHENG Genyin,ZHU Jianfang,et al. Three-dimensional modeling and application of permeability characteristics of heterogeneous porous media in goaf[J]. Coal Science and Technology,2019,47(5):220−224.
|
[19] |
DING Y,LI S G,ZHU B,et al. Research on the feasibility of storage and estimation model of storage capacity of CO2 in fissures of coal mine old goaf[J]. International Journal of Mining Science and Technology,2023,33(6):675−686. doi: 10.1016/j.ijmst.2023.03.003
|
[20] |
徐超,李小芳,陈晴晴,等. 基于非线性渗透率模型的高抽巷精准抽采参数优化[J]. 煤炭科学技术,2021,49(5):100−109.
XU Chao,LI Xiaofang,CHEN Qingqing,et al. Optimization of precise extraction parameters in high-drainage roadway based on nonlinear permeability model[J]. Coal Science and Technology,2021,49(5):100−109.
|
[21] |
李宗翔,纪书丽,题正义. 采空区瓦斯与大气两相混溶扩散模型及其求解[J]. 岩石力学与工程学报,2005,24(16):2971−2976. doi: 10.3321/j.issn:1000-6915.2005.16.027
LI Zongxiang,JI Shuli,TI Zhengyi. Two-phase miscible diffusion model and its solution between gas in goaf and atmosphere[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2971−2976. doi: 10.3321/j.issn:1000-6915.2005.16.027
|
[22] |
杨天鸿,陈仕阔,朱万成,等. 采空垮落区瓦斯非线性渗流-扩散模型及其求解[J]. 煤炭学报,2009,34(6):771−777. doi: 10.3321/j.issn:0253-9993.2009.06.011
YANG Tianhong,CHEN Shikuo,ZHU Wancheng,et al. Nonlinear percolation-diffusion model of gas in caving area and its solution[J]. Journal of China Coal Society,2009,34(6):771−777. doi: 10.3321/j.issn:0253-9993.2009.06.011
|
[23] |
李东印,许灿荣,熊祖强. 采煤工作面瓦斯流动模型及COMSOL数值解算[J]. 煤炭学报,2012,37(6):967−971.
LI Dongyin,XU Canrong,XIONG Zuqiang. Gas flowing model of mining face and solve it using COMSOL[J]. Journal of China Coal Society,2012,37(6):967−971.
|
[24] |
LI T T,WU B,LEI B W,et al. Study on air leakage and gas distribution in goaf of Y-type ventilation system[J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2024,46(1):8632−8645.
|
[25] |
高光超,李宗翔,张春,等. 基于三维“O”型圈的采空区多场分布特征数值模拟[J]. 安全与环境学报,2017,17(3):931−936.
GAO Guangchao,LI Zongxiang,ZHANG Chun,et al. Numerical simulation for multi-field distribution characteristic features of the goaf based on 3D “O” type circle[J]. Journal of Safety and Environment,2017,17(3):931−936.
|
[26] |
陈鹏,张浪,邹东起. 基于“O”形圈理论的采空区三维渗透率分布研究[J]. 矿业安全与环保,2015,42(5):38−41. doi: 10.3969/j.issn.1008-4495.2015.05.010
CHEN Peng,ZHANG Lang,ZOU Dongqi. Study of three-dimensional distribution of permeability in gob based on O-shape circle theory[J]. Mining Safety & Environmental Protection,2015,42(5):38−41. doi: 10.3969/j.issn.1008-4495.2015.05.010
|
[27] |
丁洋,陈文彬,林海飞,等. 煤矿采空区碳封存CO2泄漏地表扩散规律研究[J]. 西安科技大学学报,2023,43(4):705−714.
DING Yang,CHEN Wenbin,LIN Haifei,et al. Study on surface diffusion law of carbon storage CO2 leakage in coal mine goaf[J]. Journal of Xi’an University of Science and Technology,2023,43(4):705−714.
|
[28] |
XIE S L,WANG G,WANG E M,et al. Determination of hazardous zone of coal spontaneous combustion in ultra-long working face based on the gob porosity evolution and flow field distribution[J]. Applied Sciences,2023,13(7):4574. doi: 10.3390/app13074574
|
[29] |
李明军,杨志兴,杜建芬,等. 储层多孔介质中流体吸附研究进展[J]. 天然气勘探与开发,2010,33(3):33−35,82. doi: 10.3969/j.issn.1673-3177.2010.03.010
LI Mingjun,YANG Zhixing,DU Jianfen,et al. Study on fluid adsorption in porous media of reservoir[J]. Natural Gas Exploration and Development,2010,33(3):33−35,82. doi: 10.3969/j.issn.1673-3177.2010.03.010
|