Citation: | SUN Lin,CHEN Sheng,YAO Xulong,et al. Research on multi-objective detection method for incomplete information in coal mine underground[J]. Coal Science and Technology,2024,52(S2):211−220. DOI: 10.12438/cst.2023-1293 |
Underground target detection technology in coal mines is an indispensable component of constructing a smart mine, providing real-time monitoring and recognition capabilities. However, factors such as uneven illumination and significant obstruction underground lead to incomplete information for certain targets, greatly reducing the accuracy of target detection. To address this, an improved algorithm for multi-objective real-time detection of incomplete information in coal mine underground is proposed, based on enhancing YOLOv5s. Recognizing that incomplete targets can easily be confused with the underground background, this algorithm incorporates a CBAM (Convolutional Block Attention Module) into the Backbone of YOLOv5s. This inclusion strengthens the channels and spatial information in the feature map relevant to incomplete targets, thus enhancing the suppression of background interference. Furthermore, to effectively extract and enhance detailed features of small and occluded targets, the Weighted Bi-directional Feature Pyramid Network (BiFPN) is employed in place of the original PANet structure. Additionally, to better adapt to the shape variations of incomplete underground targets, an Enhanced Intersection over Union (EIoU) function is introduced, incorporating additional bounding box coordinate information to optimize the existing loss function. Finally, the proposed algorithm is validated using a custom-built underground dataset. Experimental results demonstrate that the improved target detection algorithm effectively addresses challenges posed by small target sizes, partial occlusion, and variations in texture and shape within the underground monitoring environment. The enhanced model achieves an average accuracy of 91.3%, an improvement of approximately 2.7% over the original model, and an F1-Score of 90.0%, an improvement of around 1.9% over the original model.
[1] |
LIU W,ANGUELOV D,ERHAN D,et al. SSD:single shot MultiBox detector[M]. Computer vision–ECCV 2016. Cham:Springer International Publishing,2016:21−37.
|
[2] |
REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once:Unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway,NJ,USA. IEEE,2016:779−788.
|
[3] |
GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Piscataway,NJ,USA. IEEE,2015:1440−1448.
|
[4] |
REN S Q,HE K M,GIRSHICK R,et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137−1149. doi: 10.1109/TPAMI.2016.2577031
|
[5] |
HE K M,GKIOXARI G,DOLLÁR P,et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway,NJ,USA. IEEE,2017:2980−2988.
|
[6] |
HE K M,ZHANG X Y,REN S Q,et al. Identity mappings in deep residual networks[M]. Computer vision–ECCV 2016. Cham:Springer International Publishing,2016:630−645.
|
[7] |
李明,鹿朋,朱美强,等. 基于改进YOLO-tiny的闸板阀开度检测[J]. 煤炭学报,2021,46(S2):1180−1190.
LI Ming,LU Peng,ZHU Meiqiang,et al. Opening degree detection of gate valve based on improved YOLO-tiny[J]. Journal of China Coal Society,2021,46(S2):1180−1190.
|
[8] |
周孟然,李学松,朱梓伟,等. 井下矿工多目标检测与跟踪联合算法[J]. 工矿自动化,2022,48(10):40−47.
ZHOU Mengran,LI Xuesong,ZHU Ziwei,et al. A joint algorithm of multi-target detection and tracking for underground miners[J]. Journal of Mine Automation,2022,48(10):40−47.
|
[9] |
郝帅,张旭,马旭,等. 基于CBAM-YOLOv5的煤矿输送带异物检测[J]. 煤炭学报,2022,47(11):4147−4156.
HAO Shuai,ZHANG Xu,MA Xu,et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society,2022,47(11):4147−4156.
|
[10] |
章赛,纪凡,卢才武,等. 低照度下改进YOLOX的煤矿无人电机车轨道障碍物检测方法[J]. 安全与环境学报,2024,24(3):952−961.
ZHANG Sai,JI Fan,LU Caiwu,et al. An improved YOLOX detection method for tracking obstacles of unmanned electric locomotives in coal mines under low lighting[J]. Journal of Safety and Environment,2024,24(3):952−961.
|
[11] |
邵小强,李鑫,杨涛,等. 改进YOLOv5s和DeepSORT的井下人员检测及跟踪算法[J]. 煤炭科学技术,2023,51(10):291−301.
SHAO Xiaoqiang,LI Xin,YANG Tao,et al. Underground personnel detection and tracking based on improved YOLOv5s and DeepSORT[J]. Coal Science and Technology,2023,51(10):291−301.
|
[12] |
张释如,黄综浏,张袁浩,等. 基于改进YOLOv5的煤矸识别研究[J]. 工矿自动化,2022,48(11):39−44.
ZHANG Shiru,HUANG Zongliu,ZHANG Yuanhao,et al. Coal and gangue recognition research based on improved YOLOv5[J]. Journal of Mine Automation,2022,48(11):39−44.
|
[13] |
张庆贺,陈晨,袁亮,等. 基于DIC和YOLO算法的复杂裂隙岩石破坏过程动态裂隙早期智能识别[J]. 煤炭学报,2022,47(3):1208−1219.
ZHANG Qinghe,CHEN Chen,YUAN Liang,et al. Early and intelligent recognition of dynamic cracks during damage of complex fractured rock masses based on DIC and YOLO algorithms[J]. Journal of China Coal Society,2022,47(3):1208−1219.
|
[14] |
寇发荣,肖伟,何海洋,等. 基于改进YOLOv5的煤矿井下目标检测研究[J]. 电子与信息学报,2023,45(7):2642−2649. doi: 10.11999/JEIT220725
KOU Farong,XIAO Wei,HE Haiyang,et al. Research on target detection in underground coal mines based on improved YOLOv5[J]. Journal of Electronics & Information Technology,2023,45(7):2642−2649. doi: 10.11999/JEIT220725
|
[15] |
秦晓辉,黄启东,常灯祥,等. 基于改进YOLOv5的露天矿山目标检测方法[J]. 湖南大学学报(自然科学版),2023,50(2):23−30.
QIN Xiaohui,HUANG Qidong,CHANG Dengxiang,et al. Object detection method in open-pit mine based on improved YOLOv5[J]. Journal of Hunan University (Natural Sciences),2023,50(2):23−30.
|
[16] |
WOO S,PARK J,LEE J Y,et al. CBAM:Convolutional Block attention module[C]//Computer Vision – ECCV 2018. Cham:Springer International Publishing,2018:3−19.
|
[17] |
岳中文,金庆雨,潘杉,等. 基于深度学习的轻量化炮孔智能检测方法[J]. 煤炭学报,2024,49(5):2247−2256.
YUE Zhongwen,JIN Qingyu,PAN Shan,et al. Intelligent detection method of lightweight blasthole based on deep learning[J]. Journal of China Coal Society,2024,49(5):2247−2256.
|
[18] |
CHEN J,MAI H S,LUO L B,et al. Effective feature fusion network in BIFPN for small object detection[C]//2021 IEEE International Conference on Image Processing (ICIP). Piscataway,NJ,USA. IEEE,2021:699−703.
|
[19] |
CHEN H B,HUANG D Y,LIN L,et al. Prior attention enhanced convolutional neural network based automatic segmentation of organs at risk for head and neck cancer radiotherapy[J]. IEEE Access,2020,8:179018−179027. doi: 10.1109/ACCESS.2020.3028038
|
[20] |
TAN M X,PANG R M,LE Q V. EfficientDet:Scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,2020:10781−10790.
|
[21] |
李功,赵巍,刘鹏,等. 一种用于目标跟踪边界框回归的光滑IoU损失[J]. 自动化学报,2023,49(2):288−306.
LI Gong,ZHAO Wei,LIU Peng,et al. Smooth-IoU loss for bounding box regression in visual tracking[J]. Acta Automatica Sinica,2023,49(2):288−306.
|
[22] |
李琳,符明恒,张铁,等. 基于改进SSD的工件定位算法[J]. 北京航空航天大学学报,2023,49(6):1260−1269.
LI Lin,FU Mingheng,ZHANG Tie,et al. A workpiece location algorithm based on improved SSD[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1260−1269.
|
[23] |
赵崇林,朱江,胡永进,等. 融合注意力和多尺度特征的航空发动机缺陷检测[J/OL]. 北京航空航天大学学报,2023:1−14. (2023−05−06)[2023−05−20]. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=BJHK20230505001&dbname=CJFD&dbcode=CJFQ.
ZHAO Chonglin,ZHU Jiang,HU Yongjin,et al. Aeroengine defect detection combining attention and multi-scale features[J/OL]. China Industrial Economics,2023:1−14. (2023−05−06)[2023−05−20]. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=BJHK20230505001&dbname=CJFD&dbcode=CJFQ.
|
[24] |
ZHANG Y F,REN W Q,ZHANG Z,et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing,2022,506:146−157. doi: 10.1016/j.neucom.2022.07.042
|
[25] |
单鹏飞,李晨炜,来兴平,等. 模拟暗湿工况下煤矸混合体态势热敏图像精准辨识实验[J]. 煤炭学报,2024,49(S1):483−494.
SHAN Pengfei,LI Chenwei,LAI Xingping,et al. Experiment on accurate identification of thermal image of coal-gangue mixture under a simulated dusky and wet condition[J]. Journal of China Coal Society,2024,49(S1):483−494.
|
[26] |
WANG C Y,BOCHKOVSKIY A,LIAO H M. YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. (2022−07−06)[2023−05−20]. https://arxiv.org/abs/2207.02696v1.
|