Advance Search

CHEN Jie,HU Haiyang,LOU Yi,et al. Surface permeability improvement and gas control extraction test of low permeability thin coal seam in Guizhou province——Taking the YP-7 well of Shanjiaoshu Mine as an example[J]. Coal Science and Technology,2023,51(S2):60−70

. DOI: 10.12438/cst.2023-1275
Citation:

CHEN Jie,HU Haiyang,LOU Yi,et al. Surface permeability improvement and gas control extraction test of low permeability thin coal seam in Guizhou province——Taking the YP-7 well of Shanjiaoshu Mine as an example[J]. Coal Science and Technology,2023,51(S2):60−70

. DOI: 10.12438/cst.2023-1275

Surface permeability improvement and gas control extraction test of low permeability thin coal seam in Guizhou province——Taking the YP-7 well of Shanjiaoshu Mine as an example

Funds: 

Guizhou Province Science and Technology Plan Funding Project (Qiankehe Strategic Mineral Exploration [2022] ZD001-03, Qiankehe Platform Talent CXTD [2022] 016, Qiankehe Support [2021] General 401)

More Information
  • Received Date: September 05, 2023
  • Available Online: March 14, 2024
  • Multiple and thin coal seams develop in Guizhou province, and the thin coal seams below 1.5 m in the coal measures of Longtan Formation account for more than 50% of the total coal seams. As for the surface gas control technology of thin coal seam mining, there is no single successful surface gas control case of thin coal seam for reference. Based on this, taking YP-7 well in Shanchushu Mine, Guizhou Province as an example, numerical simulation software was used to analyze the influence of fracturing fluid and proppant parameter changes of a single thin coal seam on the reconstruction effect, providing guidance for the optimization of surface fracturing technology of low-permeability thin coal seam gas Wells, and improving the gas extraction and treatment effect. Simulation studies and engineering tests show that fracturing pump displacement and sand ratio have significant effects on reservoir reconstruction. In the fracturing process, the fracturing liquid system of active water +KCL is used to reduce coal seam damage, and the transformation effect of thin coal seam is improved by large liquid volume, medium and high discharge, high sand volume, medium and high sand ratio, slug plus sand, and the permeability of coal seam after fracturing is increased by 6 070 times. In terms of drainage system, combined with mining pressure relief in coal mine, the method of controlling powder production and rapid pressure reduction is implemented to improve the fracturing fluid return rate of low permeability thin coal seam and expand the desorption radius. Within the desorption range of coal seam tons of coal gas decreased by 4.49 m3/t within 6 months of opening and pumping, and it is expected that the coal seam gas content within the pressure fracture network range will be reduced to less than 8 m3/t after opening and pumping for 2 years. The recovery rate of coalbed methane in the corresponding range reached 51.53%. The results show that the pressure is relatively stable during the fracturing process of YP-7 well, and the slight accumulation of quartz sand causes the pressure to rise. However, the plugging can be quickly solved with medium and high displacement, the drainage and production process is continuous and stable, and no sand and powder are produced, and the daily gas volume reaches more than 900 m3. According to the research and practice of comprehensive gas control of surface fracturing and mining pressure relief in this well, it provides guidance for the comprehensive gas control engineering practice of thin coal seam in Guizhou Province.

  • [1]
    黄中伟,李国富,杨睿月,等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报,2022,47(9):3212−3238.

    HUANG Zhongwei,LI Guofu,YANG Ruiyue,et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society,2022,47(9):3212−3238.
    [2]
    GUO Chen,QIN Yong,MA Dongmin,et al. Pore Structure and permeability characterization of high-rank coal reservoirs:A case of the Bide-Santang Basin,Western Guizhou,South China[J]. Acta Geologica Sinica(English Edition),2020,94(2):243−252. doi: 10.1111/1755-6724.14295
    [3]
    常晓亮,吕闰生,王 鹏,等. 煤储层压裂轻质陶粒支撑剂粒级配比优化[J]. 煤田地质与勘探,2021,49(2):28−33. doi: 10.3969/j.issn.1001-1986.2021.02.004

    CHANG Xiaoliang,LYU Runsheng,WANG Peng,et al. Optimization on particle size fraction of lightweight coated ceramsite proppant in coal reservoir[J]. Coal Geology & Exploration,2021,49(2):28−33. doi: 10.3969/j.issn.1001-1986.2021.02.004
    [4]
    宋金星,史俊可,刘建壮. 团聚型压裂液对煤粉运移的影响及作用机理[J]. 煤田地质与勘探,2022,50(2):48−54.

    SONG Jinxing,SHI Junke,LIU Jianzhuang. Effects of the agglomerated fracturing fluid on the transportation of pulverized coal and its mechanism[J]. Coal Geology & Exploration,2022,50(2):48−54.
    [5]
    胡海洋,赵凌云,陈 捷,等. 发耳矿区煤储层敏感性对煤层气排采影响及控制对策[J]. 煤炭科学技术,2020,48(7):334−340.

    HU Haiyang,ZHAO Linyun,CHEN Jie,et al. Influence of coal seam sensitivity on CBM drainage and control strategy in Faer Mining Area[J]. Coal Science and Technology,2020,48(7):334−340.
    [6]
    胡海洋,赵凌云,陈 捷. 松河井田多煤层资源开发条件及合采储层伤害特征[J]. 矿业安全与环保,2020,47(2):99−103.

    HU Haiyang,ZHAO Lingyun,CHEN Jie. Development conditions of multiple coal seam resources and damage characteristics of co-mining reservoirs in Songhe Mine Field[J]. Mining Safety & Environmental Protection,2020,47(2):99−103.
    [7]
    胡海洋,倪小明,朱阳稳,等. 煤层气井渗透率时空变化规律研究及应用[J]. 特种油气藏,2016,23(5):106−110. doi: 10.3969/j.issn.1006-6535.2016.05.026

    Hu Haiyang,Ni Xiaoming,Zhu Yangwen,et al. Spatial-Temporal Permeability and Its Application in CBM Well[J]. Special Oil and Gas Reservoirs,2016,23(5):106−110. doi: 10.3969/j.issn.1006-6535.2016.05.026
    [8]
    YANG Ruiyue,HUANG Zhongwei,LI Gensheng,et al. A semianalytical method for modeling two-phase flow in coalbed methane reservolrs with complex fracture networks[J]. SPE Reservoir Evaluation & Engineering,2018,21(3):719−732.
    [9]
    刘亮亮,李国庆,李国富,等. 寺河井田采空区下伏煤层应力特征及其对煤层气开发的影响[J]. 煤炭学报,2022,47(4):1608−1619.

    LIU Liangliang,LI Guoqing,LI Guofu,et al. Stress characteristics of coal seam underlying the goaf in the Sihe coalfield and its effect on the development of coalbed methane[J]. Journal of China Coal Society,2022,47(4):1608−1619.
    [10]
    苏现波,宋金星,郭红玉,等. 煤矿瓦斯抽采增产机制及关键技术[J]. 煤炭科学技术,2020,48(12):1−30.

    SU Xianbo,SONG Jinxing,GUO Hongyu,et al. Increasing production mechanism and key technology of gas extraction in coal mine[J]. Coal Science and Technology,2020,48(12):1−30.
    [11]
    张 英. 松软破碎煤层瓦斯抽采钻孔失稳机理分析及加固技术[J]. 煤炭科学技术,2018,46(7):178−183.

    ZHANG Ying. Instability mechanism analysis and reinforcement technique of gas extraction hole in soft and broken coal seam[J]. Coal Science and Technology,2018,46(7):178−183.
    [12]
    冯文军,苏现波,王建伟,等. “三软”单一煤层水力冲孔卸压增透机理及现场试验[J]. 煤田地质与勘探,2015,43(1):100−103. doi: 10.3969/j.issn.1001-1986.2015.01.021

    FENG Wenjun,SU Xianbo,WANG Jianwei,et al. Mechanism and Field test of hydraulic pressure relief and anti-reflection in “Three Soft” single coal seam[J]. Coal Field Geology and Exploration,2015,43(1):100−103. doi: 10.3969/j.issn.1001-1986.2015.01.021
    [13]
    张遂安,刘欣佳,温庆志,等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105−118. doi: 10.7623/syxb202101010

    ZHANG Sui’an,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105−118. doi: 10.7623/syxb202101010
    [14]
    李全中,申 建,胡海洋,等. 煤层气井储层地质工程特征对产能的控制研究[J]. 高校地质学报,2023,29(4):644−656.

    LI Quanzhong,SHEN Jian,HU Haiyang,et al. Research on the control of CBM well reservoir geological engineering characteristics on productivity[J]. Geological Journal of China Universities,2023,29(4):644−656.
    [15]
    杜志强. 晋城矿区王坡井田地面瓦斯抽采效果影响因素[J]. 煤田地质与勘探,2019,47(4):33−37. doi: 10.3969/j.issn.1001-1986.2019.04.006

    DU Zhiqiang. Influencing factors of surface gas extraction effect in Wangpo minefield of Jincheng mining area[J]. Coal Geology & Exploration,2019,47(4):33−37. doi: 10.3969/j.issn.1001-1986.2019.04.006
    [16]
    YANG Wei,LIN Baiquan,GAO Yabin,et al. Optimal coal discharge of hydraulic cutting inside coal seams for stimulating gas production:A case study in Pingmei coalfield[J]. Journal of Natural Gas Science and Engineering,2016,28:379−388. doi: 10.1016/j.jngse.2015.12.004
    [17]
    乔 伟. 顺层长钻孔中压水力割缝增透技术及应用[J]. 矿业安全与环保,2022,49(2):122−126.

    QIAO Wei. Application on anti-reflection technology of long borehole along coal seam with medium pressure hydraulic slotting[J]. Mining Safety & Environmental Protection,2022,49(2):122−126.
    [18]
    齐庆杰,赵尤信,吕有厂,等. 瓦斯抽采“两堵一注一排”新工艺技术[J]. 中国安全科学学报,2018,28(8):100−104.

    QI Qingjie,ZHAO Youxin,LYU Youchang,et al. New technology of gas extraction with “two blocks,one note and one row”[J]. China Safety Science Journal,2018,28(8):100−104.
    [19]
    何庆宏,赵祉友,张 蒙. 晋煤集团煤矿瓦斯灾害地面防治经验[J]. 中国煤层气,2020,17(5):3−6. doi: 10.3969/j.issn.1672-3074.2020.05.001

    HE Qinghong,ZHAO Zhiyou,ZHANG Meng. Experience in ground control of gas disaster in Shanxi coal group coal mine[J]. China Coalbed Methane,2020,17(5):3−6. doi: 10.3969/j.issn.1672-3074.2020.05.001
    [20]
    胡海洋,陈 捷,娄 毅,等. 煤层气井高产水地质与工程因素及控水措施[J]. 煤炭科学技术,2022,50(10):151−158.

    HU Haiyang,CHEN Jie,LOU Yi,et al. Geological and engineering factors of high water production in coalbed methane wells and water control measures[J]. Coal Science and Technology,2022,50(10):151−158.
    [21]
    李全中,胡海洋,吉小峰. 厚煤层煤层气井水力压裂特点及效果评价[J]. 矿业安全与环保,2023,50(1):92−96.

    LI Quanzhong,HU Haiyang,JI Xiaofeng. Characteristics and effect evaluation of hydraulic fracturing of CBM well with thick coal seam[J]. Mining Safety & Environmental Protection,2023,50(1):92−96.
    [22]
    李传亮. 油藏工程原理(第二版)[M]. 北京:石油工业出版社,2011.

    LI Chuanliang. Principles of reservoir engineering (2nd Edition)[M]. Beijing:Petroleum Industry Press,2011.
    [23]
    山 拓,孙长彦,王 乾,等. 基于煤储层水力压裂动态渗透率变化的压裂效果评价方法及其应用[J]. 煤田地质与勘探,2022,50(5):57−65.

    SHAN Tuo,SUN Changyan,WANG Qian,et al. Evaluation method and application of fracturing effect based on dynamic permeability change of coal reservoir hydraulic fracturing[J]. Coal Geology & Exploration,2022,50(5):57−65.
    [24]
    秦 义,李仰民,白建梅,等. 沁水盆地南部高煤阶煤层气井排采工艺研究与实践[J]. 天然气工业,2011,31(11):22−25. doi: 10.3787/j.issn.1000-0976.2011.11.006

    QIN Yi,LI Yangmin,BAI Jianmei,et al. Technologies in the CBM drainage and production of wells in the southern Qinshui Basin with high-rank coal beds[J]. Natural Gas Industry,2011,31(11):22−25. doi: 10.3787/j.issn.1000-0976.2011.11.006
    [25]
    孟美辰,王运海,袁 航,等. 织金区块煤层气井产气量影响因素分析[J]. 煤炭科学技术,2019,47(4):187−192.

    MENG Meichen,WANG Yunhai,YUAN Hang,et al. Influence factor analysis for coalbed methane production in Zhijin Block[J]. Coal Science and Technology,2019,47(4):187−192.
    [26]
    胡海洋,白利娜,赵凌云,等. 黔西地区龙潭组煤系气共采排采控制研究[J]. 煤矿安全,2019,50(1):175−178.

    HU Haiyang,BAI Lina,ZHAO Lingyun,et al. Drainage and mining control study on co-mining coal measure gas of Longtan formation in Western Guizhou Region[J]. Safety in Coal Mines,2019,50(1):175−178.
    [27]
    贾秉义,陈 建,方秦月. 复杂地质条件下深部煤层瓦斯高效抽采技术探索[J]. 中国矿业,2023,32(8):89−94.

    JIA Bingyi,CHEN Jian,FANG Qinyue. Exploration on efficient gas extraction technology of deep coal seam under complex geological conditions[J]. China Mining Magazine,2023,32(8):89−94.
    [28]
    张文豪,何新矿,崔崇斌,等. 马兰矿“以孔代巷”抽采下邻近层瓦斯可行性研究[J]. 中国矿业,2023,32(8):108−114.

    ZHANG Wenhao,HE Xinkuang,CUI Chongbin,et al. Feasibility study on directional “borehole instead of roadway” to extract gas from lower coal seam in Malan Mine[J]. China Mining Magazine,2023,32(8):108−114.
  • Related Articles

    [1]PANG Tao, JIANG Zaibing, WANG Zhengxi, LIU Xiugang, LI Haozhe. Influence of natural weak surface on extension of multiple fractures during fracturing of gas extraction horizontal wells[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(S1): 130-138. DOI: 10.12438/cst.2023-2000
    [2]JIANG Changbao, YANG Yihao, LIU Huihui, GUO Jianquan, FU Yinlan, WU Jiayao. Study on influence of natural fractures on initiaition and propagation of hydraulic fracturing coal[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(5): 92-101. DOI: 10.12438/cst.2023-0813
    [3]WANG Shuwen, ZHI Baoyan, DU Taotao, YANG Guangyu, LU Chuang, XIA Yongxue. Ground fracturing pre-control technology for potential mine seismic risk of thick and hard roof[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(11): 1-11. DOI: 10.12438/cst.2023-1012
    [4]LI Yang, SHU Longyong, FAN Yongpeng, HAO Jinwei, ZHOU Jianwei, HE Jian. Research on temporal−spatial relationship between ground fracturing wells and underground drilling for substitution drainage of during extraction exhaustion period[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(12): 73-82. DOI: 10.13199/j.cnki.cst.mcq22-04
    [5]XU Cheng, QIU Haisheng, LYU Xiaobo, ZHANG Kaijia, GUO Huaiguang. Numerical study on law of fracture deflection in longitudinal slot hydraulic fracturing[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(10): 78-84.
    [6]SUN Zhiyong, ZHANG Zhen, WANG Ziyue, WANG Tao, FU Yukai. Application & research on hydraulic fracturing and cutting top pressure relief technology in large mining height retained roadway[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (10).
    [7]CHEN Zhaoying, HAO Haijin, HAO Chunsheng, ZHAO Jinbin, TIAN Qingling. Study on combined extraction technology of underground longborehole and CBM ground-well fracturing[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (8).
    [8]CHENG Hongming, QIAO Yuandong, DONG Chuanlong. Study on hydraulic fractured gas drainage effect based on Hoek-Brown Criterion[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (9).
    [9]WANG Bao-yu BAI Jian-ping HAO Chun-sheng CHEN Zhao-ying, . Effect analysis on fracturing of coalbed methane surface well and long distance borehole gas drainage technology in underground mine[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (2).
    [10]Study on Mechanism and Application of Hydraulic Fracturing and Permeability Improvement Gas Drainage in Underground Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (12).
  • Cited by

    Periodical cited type(4)

    1. 胡海洋,阳富芹,陈捷,娄毅,万玉亭. 贵州省盘关向斜煤层气储层地质特征及开发效果评价. 石油实验地质. 2025(01): 213-222 .
    2. 徐昂,桑树勋,周效志,韩思杰,陈捷,冯云飞,娄毅,颜智华,高为. 薄至中厚煤层群矿区采动卸压煤层气抽采井优化设计. 煤炭科学技术. 2025(03): 385-399 . 本站查看
    3. 张寨男,杨科,华心祝,叶春辉,叶敏,刘文杰,池小楼,吕鑫. 煤矿未采区地面水平井全周期施工效果相互作用机制及开发建议. 煤炭科学技术. 2025(03): 356-369 . 本站查看
    4. 秦松,林海飞,唐江波,梁忠秋,杨守国,刘思博. 逆断影响下低渗煤层地面压裂直井井位优选研究. 采矿与安全工程学报. 2025(03): 708-719 .

    Other cited types(0)

Catalog

    Article views (37) PDF downloads (28) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return