Citation: | LI Jianlin,XUE Yang,WANG Xinyi,et al. Judgment technique for over-exploration of water-conducting channel based on process analysis and fuzzy comprehensive evaluation[J]. Coal Science and Technology,2024,52(7):178−186. DOI: 10.12438/cst.2023-1269 |
The geological conditions of the North China-type coalfields are complicated, and a large number of water-conducting channels are formed by the tectonic cutting of the coal seam base plate, whose detection and identification have always been the key point and difficulty in water damage prevention and control. Based on the multi-branch directional long drilling overrun investigation, the water-conducting channel identification technology combining process analysis and fuzzy comprehensive evaluation was constructed. Firstly, in the process of overpassing exploration, six evaluation indexes were selected, named drilling time recording, drilling fluid consumption, γ recording, rock chip recording, water pressure test and injectability and the construction process was divided into 16 working conditions, according to which a comprehensive analysis flowchart was set up to make a qualitatively judgement on whether the sample points were water-conducting. Secondly, the six indicators are quantified and graded by drilling speed, drilling fluid consumption, γ value, non-tuff proportion, unit grouting volume, and grouting volume, the weights of the indicators were determined by using the over-weighting method, and a three-level quantitative identification was made based on the fuzzy theory and the maximum membership principle to determine whether the sample point was water-conducting. Lastly, the technique was used to carry out a comprehensive process analysis and fuzzy comprehensive evaluation of 13 points in the 15031 working face of Zhaogu No.1 mine, of which 10 points had a high probability of water conduction and 3 points had a low probability of water conduction. This technique constructed a system of indicators for identifying water-conducting channels, and carried out quantitative grading and comprehensive evaluation, which improved the identification of water-conducting channels in the coalbed base plate.
[1] |
韩德品,赵镨,李丹. 矿井物探技术应用现状与发展展望[J]. 地球物理学进展,2009,24(5):1839−1849. doi: 10.3969/j.issn.1004-2903.2009.05.039
HAN Depin,ZHAO Pu,LI Dan. Application status and development prospects of mine geophysical exploration technology[J]. Progress in Geophysics,2009,24(5):1839−1849. doi: 10.3969/j.issn.1004-2903.2009.05.039
|
[2] |
刘盛东,刘静,岳建华. 中国矿井物探技术发展现状和关键问题[J]. 煤炭学报,2014,39(1):19−25.
LIU Shengdong,LIU Jing,YUE Jianhua. Development status and key problems of Chinese mining geophysical technology[J]. Journal of China Coal Society,2014,39(1):19−25.
|
[3] |
孙建,王连国. 基于微震信号突变分析的底板断层突水预测[J]. 煤炭学报,2013,38(8):1404−1410.
SUN Jian,WANG Lianguo. Floor fault water-inrush prediction based on catastrophe analysis of micro-seismic signals[J]. Journal of China Coal Society,2013,38(8):1404−1410.
|
[4] |
原富珍,马克,庄端阳,等. 基于微震监测的董家河煤矿底板突水通道孕育机制[J]. 煤炭学报,2019,44(6):1846−1856.
YUAN Fuzhen,MA Ke,ZHUANG Duanyang,et al. Preparation mechanism of water inrush channels in bottom floor of Dongjiahe Coal Mine based on microseismic monitoring[J]. Journal of China Coal Society,2019,44(6):1846−1856.
|
[5] |
韩德品,张天敏,石亚丁,等. 井下单极—偶极直流电透视原理及解释方法[J]. 煤田地质与勘探,1997,25(5):32−35.
HAN Depin,ZHANG Tianmin,SHI Yading,et al. The principle and interpretation method of the monopolar-dipole dc penetration at working face[J]. Coal Geology & Exploration,1997,25(5):32−35.
|
[6] |
曾方禄,王永胜,张小鹤,等. 矿井音频电透视及其应用[J]. 煤田地质与勘探,1997,25(6):54−57.
ZENG Fanglu,WANG Yongsheng,ZHANG Xiaohe,et al. Mine voice frequency electric perspective technique and its application[J]. Coal Geology & Exploration,1997,25(6):54−57.
|
[7] |
贾茜,张仲礼,田小超,等. 矿井无线电波透视法在唐家会矿井61101工作面隐伏断层探测中的应用[J]. 煤田地质与勘探,2017,45(1):137−142. doi: 10.3969/j.issn.1001-1986.2017.01.027
JIA Qian,ZHANG Zhongli,TIAN Xiaochao,et al. Application of radio wave perspective method in exploration of concealed fault in 61101 working face of Tangjiahui Mine[J]. Coal Geology & Exploration,2017,45(1):137−142. doi: 10.3969/j.issn.1001-1986.2017.01.027
|
[8] |
郭纯,刘白宙,白登海. 地下全空间瞬变电磁技术在煤矿巷道掘进头的连续跟踪超前探测[J]. 地震地质,2006,28(3):456−462. doi: 10.3969/j.issn.0253-4967.2006.03.014
GUO Chun,LIU Baizhou,BAI Denghai. Prediction of water disasters ahead of tunneling in coal mine using continuous detection by uwtem[J]. Seismology and Geology,2006,28(3):456−462. doi: 10.3969/j.issn.0253-4967.2006.03.014
|
[9] |
刘志新,岳建华,刘仰光. 扇形探测技术在超前探测中的应用研究[J]. 中国矿业大学学报,2007,36(6):822−825,868. doi: 10.3321/j.issn:1000-1964.2007.06.021
LIU Zhixin,YUE Jianhua,LIU Yangguang. Application of sector detection technology in advanced detection[J]. Journal of China University of Mining & Technology,2007,36(6):822−825,868. doi: 10.3321/j.issn:1000-1964.2007.06.021
|
[10] |
李学潜,韩德品,王程,等. 巷-孔瞬变电磁法在探测含导水构造中的应用[J]. 中国煤炭地质,2019,31(3):77−82. doi: 10.3969/j.issn.1674-1803.2019.03.15
LI Xueqian,HAN Depin,WANG Cheng,et al. Application of roadway-borehole TEM in water-bearing and water conducting structure prospecting[J]. Coal Geology of China,2019,31(3):77−82. doi: 10.3969/j.issn.1674-1803.2019.03.15
|
[11] |
赵睿,范涛,李宇腾,等. 钻孔瞬变电磁探测在水力压裂效果检测中的应用[J]. 煤田地质与勘探,2020,48(4):41−45. doi: 10.3969/j.issn.1001-1986.2020.04.006
ZHAO Rui,FAN Tao,LI Yuteng,et al. Application of borehole transient electromagnetic detection in the test of hydraulic fracturing effect[J]. Coal Geology & Exploration,2020,48(4):41−45. doi: 10.3969/j.issn.1001-1986.2020.04.006
|
[12] |
赵庆彪. 奥灰岩溶水害区域超前治理技术研究及应用[J]. 煤炭学报,2014,39(6):1112−1117.
ZHAO Qingbiao. Ordovician limestone Karst water disaster regional advanced governance technology study and application[J]. Journal of China Coal Society,2014,39(6):1112−1117.
|
[13] |
董书宁,李智,郑士田,等. 煤层底板导水通道钻孔超前探查与多元信息识别技术[J]. 煤炭科学技术,2023,51(7):15−23.
DONG Shuning,LI Zhi,ZHENG Shitian,et al. Advanced drilling detection and multi-information identification of water-conducting channel of coal floor[J]. Coal Science and Technology,2023,51(7):15−23.
|
[14] |
武强,崔芳鹏,赵苏启,等. 矿井水害类型划分及主要特征分析[J]. 煤炭学报,2013,38(4):561−565.
WU Qiang,CUI Fangpeng,ZHAO Suqi,et al. Type classification and main characteristics of mine water disasters[J]. Journal of China Coal Society,2013,38(4):561−565.
|
[15] |
张玉军,张志巍,肖杰,等. 承压水体上煤层底板下位隐伏断层采动突水机制研究[J]. 煤炭科学技术,2023,51(2):283−291.
ZHANG Yujun,ZHANG Zhiwei,XIAO Jie,et al. Study on mining water inrush mechanism of buried fault under coal seam floor above confined water body[J]. Coal Science and Technology,2023,51(2):283−291.
|
[16] |
董书宁,刘其声,王皓,等. 煤层底板水害超前区域治理理论框架与关键技术[J]. 煤田地质与勘探,2023,51(1):185−195. doi: 10.12363/issn.1001-1986.22.10.0813
DONG Shuning,LIU Qisheng,WANG Hao,et al. Theoretical framework and key technology of advance regional control of water inrush in coal seam floor[J]. Coal Geology & Exploration,2023,51(1):185−195. doi: 10.12363/issn.1001-1986.22.10.0813
|
[17] |
高耀全,方刚,闫兴达. 邢东煤矿深部区域奥灰水害探查治理技术[J]. 煤矿安全,2021,52(5):87−95.
GAO Yaoquan,FANG Gang,YAN Xingda. Exploration and control technology of Ordovician limestone water hazard in deep area of Xingdong coal mine[J]. Safety in Coal Mines,2021,52(5):87−95.
|
[18] |
董书宁,郭小铭,刘其声,等. 华北型煤田底板灰岩含水层超前区域治理模式与选择准则[J]. 煤田地质与勘探,2020,48(4):1−10. doi: 10.3969/j.issn.1001-1986.2020.04.001
DONG Shuning,GUO Xiaoming,LIU Qisheng,et al. Model and selection criterion of zonal preact grouting to prevent mine water disasters of coal floor limestone aquifer in North China type coalfield[J]. Coal Geology & Exploration,2020,48(4):1−10. doi: 10.3969/j.issn.1001-1986.2020.04.001
|
[19] |
阚留杰,陈钉钉,祝国伟,等. 应用测井、录井资料识别泥岩裂缝方法[J]. 录井工程,2015,26(2):29−33,90−91. doi: 10.3969/j.issn.1672-9803.2015.02.007
KAN Liujie,CHEN Dingding,ZHU Guowei,et al. Use well logging and mud logging data to recognize mudstone fractures[J]. Mud Logging Engineering,2015,26(2):29−33,90−91. doi: 10.3969/j.issn.1672-9803.2015.02.007
|
[20] |
汪磊. 微钻时录井技术在冀东油田的研究与应用[J]. 录井工程,2023,34(1):9−17. doi: 10.3969/j.issn.1672-9803.2023.01.002
WANG Lei. Research and application of micro-drilling time logging technology in Jidong Oilfield[J]. Mud Logging Engineering,2023,34(1):9−17. doi: 10.3969/j.issn.1672-9803.2023.01.002
|
[21] |
李超峰,虎维岳,王云宏,等. 煤层顶板导水裂缝带高度综合探查技术[J]. 煤田地质与勘探,2018,46(1):101−107. doi: 10.3969/j.issn.1001-1986.2018.01.018
LI Chaofeng,HU Weiyue,WANG Yunhong,et al. Comprehensive detection technique for coal seam roof water flowing fractured zone height[J]. Coal Geology & Exploration,2018,46(1):101−107. doi: 10.3969/j.issn.1001-1986.2018.01.018
|
[22] |
雷军,王慎实,杨钰. 岩屑录井数字化技术在塔里木油田的应用[J]. 录井工程,2017,28(4):1−6,129. doi: 10.3969/j.issn.1672-9803.2017.04.001
LEI Jun,WANG Shenshi,YANG Yu. Application of digital technology of cutting logging in Tarim Oilfield[J]. Mud Logging Engineering,2017,28(4):1−6,129. doi: 10.3969/j.issn.1672-9803.2017.04.001
|
[23] |
刘合年,吴蕾,曹来勇,等. 阿姆河右岸膏盐岩下碳酸盐岩缝洞储层研究[J]. 石油天然气学报,2014,36(3):46−53,4−5. doi: 10.3969/j.issn.1000-9752.2014.03.010
LIU Henian,WU Lei,CAO Laiyong,et al. Study of characteristics of sub-salt gypsum carbonate reservoir on the right bank of amudar’ya basin[J]. Journal of Oil and Gas Technology,2014,36(3):46−53,4−5. doi: 10.3969/j.issn.1000-9752.2014.03.010
|
[24] |
杨月堂. 煤矿顶部隔水性能多尺度评价[J]. 能源与环保,2023,45(2):268−274.
YANG Yuetang. Multiscale evaluation of water impermeability of coal mine roof[J]. China Energy and Environmental Protection,2023,45(2):268−274.
|
[25] |
荣传新,武汉,彭世龙,等. 千米深井L型钻孔地面预注浆岩体可注性研究[J]. 安徽理工大学学报(自然科学版),2018,38(1):1−7. doi: 10.3969/j.issn.1672-1098.2018.01.001
RONG Chuanxin,WU Han,PENG Shilong,et al. Study on the grouting of rock mass in kilometer deep well by surface ground pre-grouting of L type drilling[J]. Journal of Anhui University of Science and Technology (Natural Science),2018,38(1):1−7. doi: 10.3969/j.issn.1672-1098.2018.01.001
|
[26] |
于维洋,张颂嘉,沈会涛,等. 基于模糊物元法地表水质量评价[J]. 统计与决策,2019,35(1):72−74.
YU Weiyang,ZHANG Songjia,SHEN Huitao,et al. Evaluation of surface wat quality based on fuzzy matter-element method[J]. Statistics & Decision,2019,35(1):72−74.
|