Advance Search
SHEN Wenlong,ZHU Renren,CHEN Ziqiang,et al. Numerical analysis method of stress wave transmission attenuation of coal and rock structural plane[J]. Coal Science and Technology,2024,52(11):296−308. DOI: 10.12438/cst.2023-1173
Citation: SHEN Wenlong,ZHU Renren,CHEN Ziqiang,et al. Numerical analysis method of stress wave transmission attenuation of coal and rock structural plane[J]. Coal Science and Technology,2024,52(11):296−308. DOI: 10.12438/cst.2023-1173

Numerical analysis method of stress wave transmission attenuation of coal and rock structural plane

More Information
  • Received Date: August 14, 2023
  • Available Online: November 03, 2024
  • Given the one-dimensional dynamic joint angle and axial static load difference of the coal rock structural plane under the bearing damage of the stress wave transmittance problem, the mechanism of interface inclination and axial static load on the transmitted stress wave of the coal-rock structural surface was revealed by using indoor experiments, theoretical analysis and computer simulation. The simulation and machine learning of stress wave transmission in the experimental process of Split Hopkinson Pressure Bar (SHPB) were carried out by combining the Barton-Bandis nodal ontology model, UDEC discrete element simulation and Gray Wolf Algorithm optimized BP neural network technology. The significance orthogonal test and multi-factor analysis of variance were carried out with full consideration of the various parameters, which screened out the main influencing factors and determined the correction scheme. Simultaneously, a machine learning model for the correction of Barton-Bandis intrinsic numerical simulation parameters under axial static loading and inclination differences of coal rock structural planes is obtained, which greatly improves the computational efficiency of the correlation mechanism between deformation behavior and intrinsic parameters in the impacted state of coal rock structural planes. This study demonstrates that the machine learning prediction model based on BP artificial neural network technology has well-applicability, which can quickly determine the model parameters under the current inclination angle and axial static load of the coal rock structural plane, provide an efficient data-driven correction method for the parameters of the Barton-Bandis intrinsic model of the coal rock structural plane and also predict the parameters of numerical simulation of the coal rock structural plane under the larger inclination angle and axial static load ranges other than the given training samples.

  • [1]
    SHEN W L,WANG M,CAO Z Z,et al. Mining-induced failure criteria of interactional hard roof structures:A case study[J]. Energies,2019,12(15):3016. doi: 10.3390/en12153016
    [2]
    HE S Q,CHEN T,VENNES I,et al. Dynamic modelling of seismic wave propagation due to a remote seismic source:A case study[J]. Rock Mechanics and Rock Engineering,2020,53(11):5177−5201. doi: 10.1007/s00603-020-02217-w
    [3]
    PYRAK-NOLTE L J,MYER L R,COOK N G W. Transmission of seismic waves across single natural fractures[J]. Journal of Geophysical Research:Solid Earth,1990,95(B6):8617−8638. doi: 10.1029/JB095iB06p08617
    [4]
    ZHAO J,CAI J G. Transmission of elastic P-waves across single fractures with a nonlinear normal deformational behavior[J]. Rock Mechanics and Rock Engineering,2001,34(1):3−22. doi: 10.1007/s006030170023
    [5]
    ZHU J B,ZHAO X B,WU W,et al. Wave propagation across rock joints filled with viscoelastic medium using modified recursive method[J]. Journal of Applied Geophysics,2012,86:82−87. doi: 10.1016/j.jappgeo.2012.07.012
    [6]
    LI J C,ZHAO X B,LI H B,et al. Analytical study for stress wave interaction with rock joints having unequally close–open behavior[J]. Rock Mechanics and Rock Engineering,2016,49(8):3155−3164. doi: 10.1007/s00603-016-0974-4
    [7]
    王卫华,李夕兵,左宇军. 非线性法向变形节理对弹性纵波传播的影响[J]. 岩石力学与工程学报,2006,25(6):1218−1225. doi: 10.3321/j.issn:1000-6915.2006.06.020

    WANG Weihua,LI Xibing,ZUO Yujun. Effects of single joint with nonlinear normal deformation on p-wave propagation[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(6):1218−1225. doi: 10.3321/j.issn:1000-6915.2006.06.020
    [8]
    MA G W,FAN L F,LI J C. Evaluation of equivalent medium methods for stress wave propagation in jointed rock mass[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(7):701−715. doi: 10.1002/nag.1118
    [9]
    WANG Q Z,LI W,XIE H P. Dynamic split tensile test of Flattened Brazilian Disc of rock with SHPB setup[J]. Mechanics of Materials,2009,41(3):252−260. doi: 10.1016/j.mechmat.2008.10.004
    [10]
    ZHU W C,NIU L L,LI S H,et al. Dynamic Brazilian test of rock under intermediate strain rate:Pendulum hammer-driven SHPB test and numerical simulation[J]. Rock Mechanics and Rock Engineering,2015,48(5):1867−1881. doi: 10.1007/s00603-014-0677-7
    [11]
    ZHOU Z L,ZHAO Y,JIANG Y H,et al. Dynamic behavior of rock during its post failure stage in SHPB tests[J]. Transactions of Nonferrous Metals Society of China,2017,27(1):184−196. doi: 10.1016/S1003-6326(17)60021-9
    [12]
    KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Physical Society Section B,1949,62(11):676−700. doi: 10.1088/0370-1301/62/11/302
    [13]
    JU Yang,LI Yexue,XIE Heping,et al. Stress fluctuation and energy dissipation of jointed rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(12):2426−2434.
    [14]
    LI Nana,LI Jianchun,LI Haibo,et al. SHPB experimental study on the effect of joint contact on stress wave propagation[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(10):1994−2000.
    [15]
    WANG Jianguo,LIANG Shufeng,GAO Quanchen,et al. Experimental study on the influence of joint dip on rock-like impact energy transfer[J]. Journal of Central South University:Natural Science,2018,49(5):219−225.
    [16]
    殷志强,王建恩,张卓,等. 静载对节理煤岩体动态力学特性和应力波传播的影响[J]. 岩石力学与工程学报,2022,41(S2):3152−3162.

    YIN Zhiqiang,WANG Jian’en,ZHANG Zhuo,et al. Influence of static load on dynamic mechanical properties and stress wave propagation of jointed coal rock masses[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(S2):3152−3162.
    [17]
    XIA K,NASSERI M H B,MOHANTY B,et al. Effects of microstructures on dynamic compression of Barre granite[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(6):879−887. doi: 10.1016/j.ijrmms.2007.09.013
    [18]
    SONG B,CHEN W. Dynamic stress equilibration in split hopkinson pressure bar tests on soft materials[J]. Experimental Mechanics,2004,44(3):300−312. doi: 10.1007/BF02427897
    [19]
    王卫华. 节理动态闭合变形性质及应力波在节理处的传播[D]. 长沙:中南大学,2006.

    WANG Weihua. Joint closure under dynamic normal load and propagation of stress waves across joints[D]. Changsha:Central South University,2006.
    [20]
    宫凤强,李夕兵,饶秋华,等. 岩石SHPB试验中确定试样尺寸的参考方法[J]. 振动与冲击,2013,32(17):24−28. doi: 10.3969/j.issn.1000-3835.2013.17.005

    GONG Fengqiang,LI Xibing,RAO Qiuhua,et al. Reference method for determining sample size in SHPB tests of rock materials[J]. Journal of Vibration and Shock,2013,32(17):24−28. doi: 10.3969/j.issn.1000-3835.2013.17.005
    [21]
    ZHAO J,CAI J G,ZHAO X B,et al. Dynamic model of fracture normal behaviour and application to prediction of stress wave attenuation across fractures[J]. Rock Mechanics and Rock Engineering,2008,41(5):671−693. doi: 10.1007/s00603-006-0127-2
    [22]
    宋力,胡时胜. SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击,2005,25(4):368−373. doi: 10.3321/j.issn:1001-1455.2005.04.014

    SONG Li,HU Shisheng. Two-wave and three-wave method in SHPB data processing[J]. Explosion and Shock Waves,2005,25(4):368−373. doi: 10.3321/j.issn:1001-1455.2005.04.014
    [23]
    BANDIS S C,LUMSDEN A C,BARTON N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1983,20(6):249−268.
    [24]
    BARTON N,CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics,1977,10(1):1−54.
    [25]
    荣冠,黄凯,周创兵,等. 岩石节理法向加载非线性变形本构模型研究[J]. 中国科学:技术科学,2012,42(4):402−414. doi: 10.1360/ze2012-42-4-402

    RONG Guan,HUANG Kai,ZHOU Chuangbing,et al. A new constitutive law for the nonlinear normal deformation of rock joints under normal load[J]. Scientia Sinica (Technologica),2012,42(4):402−414. doi: 10.1360/ze2012-42-4-402
    [26]
    彭晗玉. 基于Barton-Bandis节理强度准则的节理岩体力学特性数值模拟研究[D]. 北京:中国地质大学(北京),2020:10−22.

    PENG Hanyu. Numerical simulation of mechanical properties of jointed rock mass based on barton-bandis joint strength criterion[D]. Beijing:China University of Geosciences,2020:10−22.
    [27]
    卢文波. 应力波与可滑移岩石界面间的相互作用研究[J]. 岩土力学,1996,17(3):70−75.

    LU Wenbo. A study on interaction between stress wave and slipping rock interface[J]. Rock and Soil Mechanics,1996,17(3):70−75.
    [28]
    王观石,李长洪,陈保君,等. 应力波在非线性结构面介质中的传播规律[J]. 岩土力学,2009,30(12):3747−3752. doi: 10.3969/j.issn.1000-7598.2009.12.032

    WANG Guanshi,LI Changhong,CHEN Baojun,et al. Propagation law of stress wave in nonlinear structural surface medium[J]. Rock and Soil Mechanics,2009,30(12):3747−3752. doi: 10.3969/j.issn.1000-7598.2009.12.032
    [29]
    俞缙,赵晓豹,赵维炳,等. 改进的岩石节理弹性非线性法向变形本构模型研究[J]. 岩土工程学报,2008,30(9):1316−1321. doi: 10.3321/j.issn:1000-4548.2008.09.009

    YU Jin,ZHAO Xiaobao,ZHAO Weibing,et al. Improved nonlinear elastic constitutive model for normal deformation of rock fractures[J]. Chinese Journal of Geotechnical Engineering,2008,30(9):1316−1321. doi: 10.3321/j.issn:1000-4548.2008.09.009
    [30]
    宋林. 节理岩体中应力波传播的动力特性研究[D]. 西安:西安建筑科技大学,2012:40−46.

    Song Lin. Research into the dynamic characteristics of stress wave propagation in jointed rock[D]. Xi’an:Xi’an University of Architecture & Technology,2012:40−46.
    [31]
    INC I C G. UDEC (Universal Distinct Element Code),Version 6.0 [Z]. Itasca Minneapolis,MN,USA. 2014.
    [32]
    柯长仁,温庆伟. 规则锯齿形节理在剪切荷载作用下的参数分析[J]. 湖北工业大学学报,2019,34(4):73−76,85. doi: 10.3969/j.issn.1003-4684.2019.04.017

    KE Changren,WEN Qingwei. Parametric analysis of regular dentate joints under shear loading[J]. Journal of Hubei University of Technology,2019,34(4):73−76,85. doi: 10.3969/j.issn.1003-4684.2019.04.017
    [33]
    李永红,彭振斌,钟正强,等. 基于Barton-Bandis非线性破坏准则的岩体强度预测[J]. 中南大学学报(自然科学版),2009,40(5):1388−1391.

    LI Yonghong,PENG Zhenbin,ZHONG Zhengqiang,et al. Strength prediction for rock mass based on Barton-Bandis nonlinear failure criterion[J]. Journal of Central South University (Science and Technology),2009,40(5):1388−1391.
    [34]
    PRASSETYO S H,GUTIERREZ M,BARTON N. Nonlinear shear behavior of rock joints using a linearized implementation of the Barton–Bandis model[J]. Journal of Rock Mechanics and Geotechnical Engineering,2017,9(4):671−682. doi: 10.1016/j.jrmge.2017.01.006
    [35]
    程坦,郭保华,孙杰豪,等. 渗流状态下非规则砂岩节理峰值剪切强度经验公式[J]. 岩石力学与工程学报,2022,41(S2):3141−3151.

    CHENG Tan,GUO Baohua,SUN Jiehao,et al. An empirical formula for peak shear strength of irregular sandstone joints under seepage flow[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(S2):3141−3151.
    [36]
    杜茂林,王福彦. 医学统计学[M]. 北京:人民军医出版社,2015.
    [37]
    MIRJALILI S,MIRJALILI S M,LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software,2014,69:46−61. doi: 10.1016/j.advengsoft.2013.12.007
    [38]
    张伟为,康元顺,崔哲华,等. 基于正交试验方法的大型有面外支撑杆X撑结构的屈曲分析和优化设计[J]. 工程力学,2022,39(S1):261−271.

    ZHANG Weiwei,KANG Yuanshun,CUI Zhehua,et al. Buckling analysis and optimal design of large-scale x-brace structure with out-of-plane support bars based on orthogonal test method[J]. Engineering Mechanics,2022,39(S1):261−271.
    [39]
    姜亚丽,杨刚,宋红红. 地震作用下矮塔斜拉桥的动力优化设计[J]. 工程力学,2020,37(S1):313−319.

    JIANG Yali,YANG Gang,SONG Honghong. Dynamic optimization design of extradosed cable-stayed bridge under earthquake excitation[J]. Engineering Mechanics,2020,37(S1):313−319.
    [40]
    王建国,梁书锋,高全臣,等. 节理倾角对类岩石冲击能量传递影响的试验研究[J]. 中南大学学报(自然科学版),2018,49(5):1237−1243. doi: 10.11817/j.issn.1672-7207.2018.05.027

    WANG Jianguo,LIANG Shufeng,GAO Quanchen,et al. Experimental study of jointed angles impact on energy transfer characteristics of simulated rock material[J]. Journal of Central South University (Science and Technology),2018,49(5):1237−1243. doi: 10.11817/j.issn.1672-7207.2018.05.027
    [41]
    潘博,汪旭光,徐振洋,等. 节理角度对岩石材料的动态响应影响研究[J]. 岩石力学与工程学报,2021,40(3):566−575.

    PAN Bo,WANG Xuguang,XU Zhenyang,et al. Research on the effect of joint angle on dynamic responses of rock materials[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(3):566−575.
    [42]
    范占锋,张华. 不同地应力下应力波在节理岩体中传播试验[J]. 成都大学学报(自然科学版),2021,40(3):318−323. doi: 10.3969/j.issn.1004-5422.2021.03.016

    FAN Zhanfeng,ZHANG Hua. Experiment of stress wave propagation in jointed rock under different in situ stress[J]. Journal of Chengdu University (Natural Science Edition),2021,40(3):318−323. doi: 10.3969/j.issn.1004-5422.2021.03.016
  • Related Articles

    [1]ZHANG Ermeng, LIU Lang, XU Yanchun, FEI Yu, GENG Jishi, LIN Yabing. Filling characteristics of grout diffusion zone in fractured rock mass and its influence mechanism on rock mass strength[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(7): 207-222. DOI: 10.12438/cst.2024-0524
    [2]NI Suqian, XU Ying, LAI Yonghui, YANG Rongzhou, DING Jinfu, FU Hongxin, FENG Fengfeng. Rock damage characteristics of tunnels under impact splitting and the mechanism of in-situ fracture expansion by blasting[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(10): 90-102. DOI: 10.12438/cst.2024-0027
    [3]LI Xifan, XIONG Zuqiang, SUN Yapeng, WANG Yan, SUN Ruyi, ZHU Wangang. Dynamic monitoring and optimization of technological parameters in thin coal seam filling mining[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(6).
    [4]ZHAO Fei, BAI Jianbiao, LIU Juntao. Study on design method of roadside filling-wall parameters based on multi-index test[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(4).
    [5]WANG Kaiwang. Study on technology of fracturing and permeability improved ofcoal seam with high pressure air blasting[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (2).
    [6]Gu Helong Nan Hua Wang Wen xu Chengchuan Lin Dong, . Inspection and application of blasting and pressure released technology to mine pressure bump prevention and control[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (4).
    [7]Yang Shengjiang Li Zhengjie Lou Jinfu, . Study on pressure releasing technology with structural cracking made with deep borehole blasting[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (7).
    [8]ZHAI Cheng WU Shi-liang TANG Zong-qing ZHONG Chao XU Ji-zhao, . Study on seam fracturing and permeability improved technology based on static blasting[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (5).
    [9]Technical Access to Improve Lump Coal Rate of Drilling and Blasting Coal Mining Face Area[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (4).
    [10]Grouting Backfill Technology with Super High Water Material for Overburden Bed-separation and Falling Fractured Zone[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (3).
  • Cited by

    Periodical cited type(2)

    1. 罗朝椿,王清岩,范黎明,李昊轩,钟蔚岭,郭乃铭. 万米钻机全液压顶驱平衡装置液压回路设计与仿真. 煤田地质与勘探. 2025(02): 233-242 .
    2. 赵继云,曹超,王浩,泮延召,黄笛,韩静,苗运江. 液压支架大功率供液系统的现状与智能化发展趋势. 煤炭学报. 2025(01): 676-693 .

    Other cited types(0)

Catalog

    Article views (47) PDF downloads (36) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return