Advance Search
WU Jinwen,DENG Xiaowei,JIAO Feishuo,et al. Resource utilization status and development trend of bulk solid waste of coal-based ash/slag[J]. Coal Science and Technology,2024,52(6):238−252. DOI: 10.12438/cst.2023-1102
Citation: WU Jinwen,DENG Xiaowei,JIAO Feishuo,et al. Resource utilization status and development trend of bulk solid waste of coal-based ash/slag[J]. Coal Science and Technology,2024,52(6):238−252. DOI: 10.12438/cst.2023-1102

Resource utilization status and development trend of bulk solid waste of coal-based ash/slag

Funds: 

National Natural Science Foundation of China (51774283,51904096)

More Information
  • Received Date: July 27, 2023
  • Available Online: May 30, 2024
  • In recent years, the rapid development of the coal industry has provided important energy security and raw material support for the national economy. At the same time, coal-fired power plants, industrial, civil boilers and other equipment produce large quantities of coal-based ash/slag (fly ash, coal-fired slag, gasification slag) and other industrial solid waste during the coal combustion and gasification processes, which have a significant impact on the ecological environment.Taking coal-based ash/slag represented by fly ash and gasification slag as an example, China emits about 800 million tons of fly ash and 35 million tons of gasification slag every year. However, limited by the national energy structure, industrial policy and other factors, as well as the resource distribution of coal-based ash/slag and the nature of the origin of the constraints. At present, the efficient resource utilisation of coal-based ash/slag is still to be improved. Among them, the comprehensive utilization rate of fly ash is 70%, and that of gasification slag is only 30%. In the future, China's bulk solid waste still faces the dilemma of large output, inadequate utilization of resources and low added value of comprehensive utilization products. Therefore, to further improve the comprehensive utilization level of bulk solid waste, comprehensively improve the efficiency of resource utilization, actively implement the national ‘carbon peak’ and ‘carbon neutrality’ related policies.Completing the relevant work in the ‘14th Five-Year Plan’ of the coal industry is an important issue for coal development and utilisation at present. Based on this, a lot of exploration has been carried out for the properties of coal-based ash/slag, such as classification, separation, quality and other technical research. Targeted process technologies and equipment have been developed, partially realising bulk solid waste resource utilisation and high value-added utilisation of coal-based ash/slag. In view of the characteristics of coal-based ash/slag with large specific surface area, developed pore structure, high carbon content, rich in aluminium and silicon content, it has been widely used as a raw material in construction and building materials, environmental protection, ecology, chemical industry and other fields.In this paper, the utilization of bulk solid waste resource and the utilization of high value-added in deep processing of coal-based ash/slag are discussed. ① Construction, building materials and other application fields are still important directions to improve the resource utilization of bulk solid waste of coal-based ash/slag. However, due to the problems of coal-based ash/slag resource utilization, such as decarbonization, carbon-ash separation technology, equipment need to be improved, difficulties in dewatering and drying, and possible precipitation of heavy metals, etc., which need to be followed up with in-depth research. ② Extraction of useful components and used in the preparation of functional carbon materials, environmental pollution control and other fields can realize the deep processing of coal-based ash/slag with high value-added utilization. However, it is necessary to effectively treat the acid, alkali or heavy metal waste liquid generated in the production process to reduce the pollution to the environment. In view of the existing problems in the resource utilization of bulk solid waste of coal-based ash/slag, its future development trend was discussed.It is expected to provide reference for the resource utilization of bulk solid waste of coal-based ash/slag as well as the high-end, low-carbon and green development of the coal chemical industry.

  • [1]
    2022年12月份能源生产情况[N]. 中国信息报,2023-01-18(004).
    [2]
    QIAN C,YI H H,DU W. Bacteria fixing CO2 to enhance the volume stability of ground steel slag powder as a component of cement-based materials aiming at clean production[J]. Journal of Cleaner Production,2021,314:127821. doi: 10.1016/j.jclepro.2021.127821
    [3]
    朱菊芬,李健,闫龙,等. 煤气化渣资源化利用研究进展及应用展望[J]. 洁净煤技术,2021,27(6):11−21.

    ZHU Jufen,LI Jian,YAN Long,et al. Research progress and application prospect of coal gasification slag resource utilization[J]. Clean Coal Technology,2021,27(6):11−21.
    [4]
    李博琦,谢贤,吕晋芳,等. 粉煤灰资源化综合利用研究进展及展望[J]. 矿产保护与利用,2020,40(5):153−160.

    LI Boqi,XIE Xian,LYU Jinfang,et al. Progress and prospect of research on comprehensive utilization of fly ash[J]. Conservation and Utilization of Mineral Resources,2020,40(5):153−160.
    [5]
    YAO Z T,JI X S,SARKER P K,et al. A comprehensive review on the applications of coal fly ash[J]. Earth-Science Reviews,2015,141:105−121. doi: 10.1016/j.earscirev.2014.11.016
    [6]
    张汉鑫,李慧,谢珊珊,等. 粉煤灰处理及资源利用[J]. 矿产综合利用,2018(5):25−27. doi: 10.3969/j.issn.1000-6532.2018.05.005

    ZHANG Hanxin,LI Hui,XIE Shanshan,et al. Treatment and resource application of fly ash[J]. Multipurpose Utilization of Mineral Resources,2018(5):25−27. doi: 10.3969/j.issn.1000-6532.2018.05.005
    [7]
    SONG H,ZHAI F,ZHANG L. Comprehensive utilization of coal ash in China[J]. Journal of Kunming University of Science and Technology (Science and Technology),2006,31(5):71−77.
    [8]
    郭晨夫. 粉煤灰的综合应用研究[J]. 现代工业经济和信息化,2022,12(7):82−83.

    GUO Chenfu. Comprehensive application study of fly ash[J]. Modern Industrial Economy and Informationization,2022,12(7):82−83.
    [9]
    赵爱春,刘煜金,张廷安,等. 粉煤灰综合利用硫酸浸取铝、铁试验[J]. 中国有色冶金,2022,51(2):99−105.

    ZHAO Aichun,LIU Yujin,ZHANG Tingan,et al. Experiment on sulfuric acid leaching of aluminum and iron for comprehensive utilization of coal ash[J]. China Nonferrous Metallurgy,2022,51(2):99−105.
    [10]
    陈小凤,周建,尹砾珩,等. 炉渣对废水中Zn(Ⅱ)的吸附机理研究[J]. 环境科学导刊,2018,37(2):76−80.

    CHEN Xiaofeng,ZHOU Jian,YIN Liheng,et al. Study on adsorption mechanism of slag to Zn(Ⅱ) in wastewater[J]. Environmental Science Survey,2018,37(2):76−80.
    [11]
    赵永彬. 粉煤灰的矿物学性质研究[J]. 洁净煤技术,2015,21(4):112−116,121.

    ZHAO Yongbin. Research on mineralogical properties of fly ash[J]. Clean Coal Technology,2015,21(4):112−116,121.
    [12]
    柴磊,岳天,严志桦,等. 粉煤灰资源化利用研究进展[J]. 中国资源综合利用,2023,41(2):93−98.

    CHAI Lei,YUE Tian,YAN Zhihua,et al. Research progress on resource utilization of fly ash[J]. China Resources Comprehensive Utilization,2023,41(2):93−98.
    [13]
    王华国. 燃煤炉渣理化特性及用于污水处理的可行性研究[J]. 能源与节能,2021(7):105−106.

    WANG Huaguo. Study on physical and chemical properties of coal-fired slag and its feasibility for sewage treatment[J]. Energy and Energy Conservation,2021(7):105−106.
    [14]
    BO L ,XIAOWEI D ,FEISHUO J , et al. Enrichment and utilization of residual carbon from coal gasification slag:A review[J]. Process Safety and Environmental Protection, 2023, 171:859−873.
    [15]
    顾成,李宇. 煤基固废物综合利用研究进展[J]. 煤炭与化工,2020,43(9):98−101,106.

    GU Cheng,LI Yu. Study on progress in comprehensive utilization of coal based solid waste[J]. Coal and Chemical Industry,2020,43(9):98−101,106.
    [16]
    杨帅,石立军. 煤气化细渣组分分析及其综合利用探讨[J]. 煤化工,2013,41(4):29−31,38. doi: 10.3969/j.issn.1005-9598.2013.04.009

    YANG Shuai,SHI Lijun. Composition analysis of the fine slag from coal gasification and its comprehensive utilization[J]. Coal Chemical Industry,2013,41(4):29−31,38. doi: 10.3969/j.issn.1005-9598.2013.04.009
    [17]
    景娟,李兆锋. 航天炉粉煤加压技术气化粗渣的研究[J]. 硅酸盐通报,2018,37(8):2601−2605.

    JING Juan,LI Zhaofeng. Study on the coarse slag from Hangtian pulverized coal pressure gasification technology(HT-L)[J]. Bulletin of the Chinese Ceramic Society,2018,37(8):2601−2605.
    [18]
    曲江山,张建波,孙志刚,等. 煤气化渣综合利用研究进展[J]. 洁净煤技术,2020,26(1):184−193.

    QU Jiangshan,ZHANG Jianbo,SUN Zhigang,et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology,2020,26(1):184−193.
    [19]
    杨宏泉,孙志刚,曲江山,等. 中石化典型地区气化炉渣基础物性分析研究[J]. 洁净煤技术,2021,27(3):101−108.

    YANG Hongquan,SUN Zhigang,QU Jiangshan,et al. Analysis and research on basic physical properties of gasification slag in representative areas of Sinopec[J]. Clean Coal Technology,2021,27(3):101−108.
    [20]
    张丽宏,金要茹,程芳琴. 煤气化渣资源化利用[J]. 化工进展,2023,42(8):4447−4457.

    ZHANG Lihong,JIN Yaoru,CHENG Fangqin. Resource utilization of coal gasification slag[J]. Chemical Industry and Engineering Progress,2023,42(8):4447−4457.
    [21]
    周忠华. 高掺量无烟煤粉煤灰烧结砖的研究[J]. 砖瓦,2020(5):21−23. doi: 10.3969/j.issn.1001-6945.2020.05.007

    ZHOU Zhonghua. Study on fired brick with high content of anthracite fly ash[J]. Brick-Tile,2020(5):21−23. doi: 10.3969/j.issn.1001-6945.2020.05.007
    [22]
    丁永发,张虎彪,张轩硕,等. 水泥粉煤灰稳定砖、混凝土再生碎石试验[J]. 宁夏工程技术,2022,21(1):44−50. doi: 10.3969/j.issn.1671-7244.2022.01.009

    DING Yongfa,ZHANG Hubiao,ZHANG Xuanshuo,et al. Test of brick and concrete recycled aggregate mixtures stabilized by cement and fly ash[J]. Ningxia Engineering Technology,2022,21(1):44−50. doi: 10.3969/j.issn.1671-7244.2022.01.009
    [23]
    徐硕,杨金林,马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用,2021,41(3):104−111.

    XU Shuo,YANG Jinlin,MA Shaojian. Research progress in the comprehensive utilization of fly ash[J]. Conservation and Utilization of Mineral Resources,2021,41(3):104−111.
    [24]
    ZHANG J C,DONG B Q,HONG S X,et al. Investigating the influence of fly ash on the hydration behavior of cement using an electrochemical method[J]. Construction and Building Materials,2019,222:41−48. doi: 10.1016/j.conbuildmat.2019.06.046
    [25]
    王晓庆. 超细粉煤灰对水泥基复合胶凝材料水化硬化性能的影响[D]. 泰安:山东农业大学,2016.

    WANG Xiaoqing. The influence of the ultra-fine fly ash during the hydration and hardening process of complex binders[D]. Taian:Shandong Agricultural University,2016.
    [26]
    DUAN S Y,LIAO H Q,MA Z B,et al. The relevance of ultrafine fly ash properties and mechanical properties in its fly ash-cement gelation blocks via static pressure forming[J]. Construction and Building Materials,2018,186:1064−1071. doi: 10.1016/j.conbuildmat.2018.08.035
    [27]
    王绎景,李珠,秦渊,等. 再生骨料替代率对混凝土抗压强度影响的研究[J]. 混凝土,2018(12):27−30,33.

    WANG Yijing,LI Zhu,QIN Yuan,et al. Effect of replacement rate of recycled coarseaggretrate on compressive strength of concrete[J]. Concrete,2018(12):27−30,33.
    [28]
    姚红,毕怀玺. 一种粉煤灰陶粒制备轻质高强混凝土配合比设计[J]. 中国科技信息,2022(18):118−121. doi: 10.3969/j.issn.1001-8972.2022.18.zgkjxx202218034
    [29]
    夏侯唐鹏,张金海,魏东风. 水利工程大掺量粉煤灰混凝土实践分析[J]. 工程建设与设计,2022(18):127−129.

    XIAHOU Tangpeng,ZHANG Jinhai,WEI Dongfeng. Practical analysis of large amount of fly ash concrete in water conservancy projects[J]. Construction & Design for Engineering,2022(18):127−129.
    [30]
    贾飞,李丽宁,杜森,等. 隧道二次衬砌大掺量粉煤灰混凝土抗渗性研究[J]. 施工技术(中英文),2022,51(21):74−78.

    JIA Fei,LI Lining,DU Sen,et al. Research on the permeability resistance of high volume fly ash concrete in tunnel secondary lining[J]. Construction Technology,2022,51(21):74−78.
    [31]
    FUZAIL HASHMI A,SHARIQ M,BAQI A. Flexural performance of high volume fly ash reinforced concrete beams and slabs[J]. Structures,2020,25:868−880. doi: 10.1016/j.istruc.2020.03.071
    [32]
    张腾腾,王传林,张宇轩,等. 粉煤灰掺量对海水海砂高性能混凝土性能的影响[J]. 硅酸盐通报,2022,41(5):1677−1688. doi: 10.3969/j.issn.1001-1625.2022.5.gsytb202205023

    ZHANG Tengteng,WANG Chuanlin,ZHANG Yuxuan,et al. Effect of fly ash content on performance of high performance concrete with seawater and sea sand[J]. Bulletin of the Chinese Ceramic Society,2022,41(5):1677−1688. doi: 10.3969/j.issn.1001-1625.2022.5.gsytb202205023
    [33]
    陈芳. 粉煤灰质泡沫陶瓷的研制[J]. 江苏陶瓷,2018,51(3):31−33,36. doi: 10.3969/j.issn.1006-7337.2018.03.014
    [34]
    KNIESS C T,DE LIMA J C,PRATES P B,et al. Dilithium dialuminium trisilicate phase obtained using coal bottom ash[J]. Journal of Non-Crystalline Solids,2007,353(52/54):4819−4822. doi: 10.1016/j.jnoncrysol.2007.06.047
    [35]
    赵飞洋,乔思皓,解培睿,等. 多粒级粗骨料级配对粉煤灰陶粒混凝土性能影响研究[J]. 混凝土,2022(8):60−66. doi: 10.3969/j.issn.1002-3550.2022.08.013

    ZHAO Feiyang,QIAO Sihao,XIE Peirui,et al. Effect of multi-level coarse aggregate gradation on the performance of fly ash ceramsite concrete[J]. Concrete,2022(8):60−66. doi: 10.3969/j.issn.1002-3550.2022.08.013
    [36]
    张雷,赵玉静,俞瑾. 炉底渣磨细灰的物性参数研究[J]. 混凝土世界,2019(6):68−71. doi: 10.3969/j.issn.1674-7011.2019.06.012

    ZHANG Lei,ZHAO Yujing,YU Jin. Study on the physical property of ground furnace bottom slag[J]. China Concrete,2019(6):68−71. doi: 10.3969/j.issn.1674-7011.2019.06.012
    [37]
    张月婷,徐明德. 矿渣资源的合理化利用:评《矿渣基生态水泥》[J]. 矿业研究与开发,2019,39(6):157−158.
    [38]
    翟祥军,张虹. 磨细炉渣作为大体积混凝土掺合料的试验研究[J]. 水力发电,2018,44(12):121−125. doi: 10.3969/j.issn.0559-9342.2018.12.030

    ZHAI Xiangjun,ZHANG Hong. Experimental study on grinded fine slag as bulk concrete admixture[J]. Water Power,2018,44(12):121−125. doi: 10.3969/j.issn.0559-9342.2018.12.030
    [39]
    张连卫,刘长武,刁兆丰,等. 电厂炉渣改性高水材料的强度特征与破坏形式[J]. 科学技术与工程,2019,19(10):182−187. doi: 10.3969/j.issn.1671-1815.2019.10.028

    ZHANG Lianwei,LIU Changwu,DIAO Zhaofeng,et al. Strength characteristics and failure form of High-water-materials modified by slag of power plant[J]. Science Technology and Engineering,2019,19(10):182−187. doi: 10.3969/j.issn.1671-1815.2019.10.028
    [40]
    蒋善国,韩佳琦,陈忠平,等. 燃煤炉渣基泡沫轻质土路用材料性能研究[J]. 中外公路,2022,42(4):222−226.

    JIANG Shanguo,HAN Jiaqi,CHEN Zhongping,et al. Study on performances of foamed lightweight dirt road materials in coal-burnig slag[J]. Journal of China & Foreign Highway,2022,42(4):222−226.
    [41]
    刘炜震,郭忠平,何维胜,等. 燃煤炉渣混凝土材料配比及强度特性试验研究[J]. 矿业研究与开发,2020,40(5):56−59.

    LIU Weizhen,GUO Zhongping,HE Weisheng,et al. Experimental study on the ratio and strength characteristics of coal-fired slag concrete[J]. Mining Research and Development,2020,40(5):56−59.
    [42]
    黄凯,向丛阳,张玉清,等. 钢渣和燃煤炉渣制备不同细度水泥的性能研究[J]. 水泥工程,2022(2):24−25.
    [43]
    王宁,安巧霞,管裕,等. 粉煤灰、炉渣对混凝土抗压强度和吸水率的影响[J]. 塔里木大学学报,2022,34(2):43−48.

    WANG Ning,AN Qiaoxia,GUAN Yu,et al. Influence of fly ash and slag on compressive strength and water absorption of concrete[J]. Journal of Tarim University,2022,34(2):43−48.
    [44]
    郑好. 矿冶废弃物用作人工湿地填料处理生活污水研究[D]. 武汉:武汉科技大学,2013.

    ZHENG Hao. Research on the use of mining and metallurgy wastes as substrate in constructed wetland for treating domestic sewage[D]. Wuhan:Wuhan University of Science and Technology,2013.
    [45]
    李林永,王敦球,张华,等. 煤渣作为人工湿地除磷基质的性能评价[J]. 桂林理工大学学报,2011,31(2):246−251. doi: 10.3969/j.issn.1674-9057.2011.02.015

    LI Linyong,WANG Dunqiu,ZHANG Hua,et al. Performance of coal cinder as wetland substrate for phosphorus removal[J]. Journal of Guilin University of Technology,2011,31(2):246−251. doi: 10.3969/j.issn.1674-9057.2011.02.015
    [46]
    程晓波,潘炜,王非,等. 一种有机复合炉渣填料人工湿地处理系统. [P]. 中国:ZL102910740B 2014-05-21.
    [47]
    WANG Guangwei,QIU Liping,LI Yanbo,et al. Comparative study of different activated slags on phosphate removal[J]. Computer Society,2011(10):694−697.
    [48]
    赵泽宁. 不同基质垂直流人工湿地对高污染河水磷的去除效果[D]. 西安:西安建筑科技大学,2015.

    ZHAO Zening. Phosphorus removal of vertical flow constructed wetlands using different substrates for purifying highly polluted river water[D]. Xi’an:Xi’an University of Architecture and Technology,2015.
    [49]
    秦娟娟. 人工湿地填料对含盐污水中污染物吸附性能研究[D]. 青岛:中国海洋大学,2015.

    QIN Juanjuan. The study of adsorption characteristics of pollutants in saline wastewater by constructed wetland substrates[D]. Qingdao:Ocean University of China,2015.
    [50]
    GLYMOND D,ROBERTS A,RUSSELL M,et al. Production of ceramics from coal furnace bottom ash[J]. Ceramics International,2018,44(3):3009−3014. doi: 10.1016/j.ceramint.2017.11.057
    [51]
    NAMKANE K,NAKSATA W,THIANSEM S,et al. Utilization of coal bottom ash as raw material for production of ceramic floor tiles[J]. Environmental Earth Sciences,2016,75(5):386. doi: 10.1007/s12665-016-5279-0
    [52]
    陈元. 以粉煤灰、炉渣和污泥为基陶粒制备及其对含铅废水的吸附性能[D]. 西安:西安建筑科技大学,2022.

    CHEN Yuan. Preparation of ceramsite based on fly ash,slag and sludge and its adsorption to lead-containing wastewater[D]. Xi’an:Xi’an University of Architecture and Technology,2022.
    [53]
    武立波,宋牧原,谢鑫,等. 中国煤气化渣建筑材料资源化利用现状综述[J]. 科学技术与工程,2021,21(16):6565−6574. doi: 10.3969/j.issn.1671-1815.2021.16.004

    WU Libo,SONG Muyuan,XIE Xin,et al. A review on resource utilization of coal gasification slag as building materials in China[J]. Science Technology and Engineering,2021,21(16):6565−6574. doi: 10.3969/j.issn.1671-1815.2021.16.004
    [54]
    LUO F,JIANG Y S,WEI C D. Potential of decarbonized coal gasification residues as the mineral admixture of cement-based material[J]. Construction and Building Materials,2021,269:121259. doi: 10.1016/j.conbuildmat.2020.121259
    [55]
    FU Bo,CHENG Zhenyun,WANG Dezhi,et al. Investigation on the utilization of coal gasification slag in Portland cement:Reaction kinetics and microstructure[J]. Construction and Building Materials,2022,323:126587. doi: 10.1016/j.conbuildmat.2022.126587
    [56]
    郭磊,李祖仲,魏召召,等. 一种掺煤气化渣高模量沥青混凝土材料及其制备方法[P]. 中国:ZL105417987A,2016-03-23.
    [57]
    傅博,马梦凡,申旺,等. 气化渣对硅酸盐水泥强度和微观结构的影响研究[J]. 硅酸盐通报,2020,39(8):2523−2527.

    FU Bo,MA Mengfan,SHEN Wang,et al. Influence of coal gasification slag on strength and microstructure of Portland cement[J]. Bulletin of the Chinese Ceramic Society,2020,39(8):2523−2527.
    [58]
    盛燕萍,冀欣,徐刚,等. 煤气化渣水泥稳定碎石基层材料性能研究[J]. 应用化工,2020,49(6):1407−1412,1417. doi: 10.3969/j.issn.1671-3206.2020.06.018

    SHENG Yanping,JI Xin,XU Gang,et al. Study on the performance of coal gasification slag cement stabilized macadam base[J]. Applied Chemical Industry,2020,49(6):1407−1412,1417. doi: 10.3969/j.issn.1671-3206.2020.06.018
    [59]
    詹文艺,程臻赟,李欣,等. 气化渣对碱激发混凝土冻融性能影响[J]. 江西建材,2021(8):27−28,31. doi: 10.3969/j.issn.1006-2890.2021.08.014

    ZHAN Wenyi,CHENG Zhenyun,LI Xin,et al. Freeze-thaw effect on the durability of alkali activated concrete containing gasifier slag[J]. Jiangxi Building Materials,2021(8):27−28,31. doi: 10.3969/j.issn.1006-2890.2021.08.014
    [60]
    高鹏,李庆宏,田建平,等. 煤气化炉渣路面基层材料研究与应用[J]. 武汉理工大学学报(交通科学与工程版),2021,45(1):155−160.

    GAO Peng,LI Qinghong,TIAN Jianping,et al. Research and application of road base material prepared by coal gasification slag[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering),2021,45(1):155−160.
    [61]
    牛国峰. 煤气化渣制备烧结墙体材料工艺及烧结机理研究[D]. 包头:内蒙古科技大学,2022.

    NIU Guofeng. Study on the process and burning mechanism of coal gasification slag for preparing sintered wall materials[D]. Baotou:Inner Mongolia University of Science & Technology,2022.
    [62]
    张成,裴超. 煤气化渣生产蒸压砖的技术研究[J]. 砖瓦世界,2019(10):49−52.

    ZHANG Cheng,PEI Chao. Technological research on production of autoclaved bricks from coal gasification slag[J]. Brick & Tile World,2019(10):49−52.
    [63]
    孙培梅,李广民,童军武,等. 从电厂粉煤灰中提取氧化铝物料烧结过程工艺研究[J]. 煤炭学报,2007,32(7):744−747.

    SUN Peimei,LI Guangmin,TONG Junwu,et al. Study on sintering process of raw materials in extracting alumina from fly ash of coal industry power plate[J]. Journal of China Coal Society,2007,32(7):744−747.
    [64]
    杨再明,吕中阳,潘晓林,等. 低钙石灰烧结法处理粉煤灰高效提取氧化铝研究[J]. 有色金属(冶炼部分),2020(9):64−68,96. doi: 10.3969/j.issn.1007-7545.2020.09.013

    YANG Zaiming,LYU Zhongyang,PAN Xiaolin,et al. Extraction of alumina from desiliconized fly ash by low-calcium lime sinter process[J]. Nonferrous Metals (Extractive Metallurgy),2020(9):64−68,96. doi: 10.3969/j.issn.1007-7545.2020.09.013
    [65]
    KAMRAN HAGHIGHI H,IRANNAJAD M,FORTUNY A,et al. Recovery of germanium from leach solutions of fly ash using solvent extraction with various extractants[J]. Hydrometallurgy,2018,175:164−169. doi: 10.1016/j.hydromet.2017.11.006
    [66]
    周小平,王莎莎,魏建成,等. 从粉煤灰中酸浸铝铁镓的试验研究[J]. 非金属矿,2022,45(4):65−67,71.

    ZHOU Xiaoping,WANG Shasha,WEI Jiancheng,et al. Experimental study on acid leaching of aluminum,iron and gallium from fly ash[J]. Non-Metallic Mines,2022,45(4):65−67,71.
    [67]
    李超,王丽萍,郭昭华,等. 盐酸体系下镓的提取技术研究进展[J]. 稀有金属与硬质合金,2019,47(1):6−10.

    LI Chao,WANG Liping,GUO Zhaohua,et al. Research progress on gallium extraction technology in hydrochloric acid system[J]. Rare Metals and Cemented Carbides,2019,47(1):6−10.
    [68]
    TOMASZ K,ANNA K,RYSZARD C. Effective adsorption of lead ions using fly ash obtained in the novel circulating fluidized bed combustion technology[J]. Microchemical Journal,2019,145:1011−1025. doi: 10.1016/j.microc.2018.12.005
    [69]
    袁宏涛,刘羽,安璐,等. 改性粉煤灰吸附剂的制备及对石油烃的吸附研究[J]. 山东化工,2018,47(10):180−183.

    YUAN Hongtao,LIU Yu,AN Lu,et al. The preparation of modified fly ash adsorbent and adsorption study on the petroleum hydrocarbon[J]. Shandong Chemical Industry,2018,47(10):180−183.
    [70]
    魏亚辉,李绍滋. 粉煤灰对造纸废水中污染物的吸附性能研究[J]. 中国造纸,2023,42(1):65−69. doi: 10.11980/j.issn.0254-508X.2023.01.010

    WEI Yahui,LI Shaozi. Study on the adsorption property of fly ash towards pollutants in papermaking wastewater[J]. China Pulp & Paper,2023,42(1):65−69. doi: 10.11980/j.issn.0254-508X.2023.01.010
    [71]
    杨学子,刘玉忠. 粉煤灰陶粒对水体中磷的吸附性能研究[J]. 环境生态学,2022,4(11):103−107,114.

    YANG Xuezi,LIU Yuzhong. Study on the adsorption properties of fly ash ceramsite for phosphorus in water[J]. Environmental Ecology,2022,4(11):103−107,114.
    [72]
    黄强,何毅聪,张静. 粉煤灰对含铬废水中六价铬的吸附性能研究[J]. 煤质技术,2022,37(5):27−35.

    HUANG Qiang,HE Yicong,ZHANG Jing. Study on adsorption of Cr(Ⅵ) from chromium containing wastewater by fly ash[J]. Coal Quality Technology,2022,37(5):27−35.
    [73]
    王丽萍,李超. 粉煤灰资源化技术开发与利用研究进展[J]. 矿产保护与利用,2019,39(4):38−45.

    WANG Liping,LI Chao. Research progress on development and utilization of fly ash resource technology[J]. Conservation and Utilization of Mineral Resources,2019,39(4):38−45.
    [74]
    黄齐真,石林,何柳青. 粉煤灰的农业高效资源化研究与应用[J]. 非金属矿,2021,44(4):12−14,18. doi: 10.3969/j.issn.1000-8098.2021.04.004

    HUANG Qizhen,SHI Lin,HE Liuqing. Study and application on efficient resource utilization of coal fly ash in agriculture[J]. Non-Metallic Mines,2021,44(4):12−14,18. doi: 10.3969/j.issn.1000-8098.2021.04.004
    [75]
    孙联合,郭中义,孔子明. 砂姜黑土区小麦施用粉煤灰磁化复合肥增产效应研究[J]. 现代农业科技,2010(6):284,286.
    [76]
    胡兆平,李兴平,刘阳,等. 粉煤灰与低品位磷矿制含磷肥料的研究[J]. 山东化工,2016,45(6):20−21,24. doi: 10.3969/j.issn.1008-021X.2016.06.007

    HU Zhaoping,LI Xingping,LIU Yang,et al. Study on phosphorous fertilizer by fly ash and low grade phosphorite[J]. Shandong Chemical Industry,2016,45(6):20−21,24. doi: 10.3969/j.issn.1008-021X.2016.06.007
    [77]
    欧彦君. 粉煤灰基新型多功能土壤调理剂增产提质机理[D]. 北京:中国科学院大学(中国科学院过程工程研究所),2022.

    OU Yanjun. Mechanism on increasing crop yield and improving its quality of fly ash-based new multifunctional soil conditioner[D]. Beijing:Institute of Process Engineering,Chinese Academy of Sciences,2022.
    [78]
    张文丽,马鹏真,张雨辰. 炉渣在农村生活污水净化中的应用试验[J]. 环境科学导刊,2021,40(4):62−65.

    ZHANG Wenli,MA Pengzhen,ZHANG Yuchen. Adsorption performance of slag and its application test in the purification of rural domestic sewage[J]. Environmental Science Survey,2021,40(4):62−65.
    [79]
    周建,陈小凤,尹砾珩,等. 以炉渣为载体处理重金属废水的吸附研究[J]. 环境科学导刊,2018,37(2):81−84.

    ZHOU Jian,CHEN Xiaofeng,YIN Liheng,et al. Study on adsorption of heavy metal wastewater by slag as carrier[J]. Environmental Science Survey,2018,37(2):81−84.
    [80]
    赵洋,唐永智,魏金花. 火电厂废弃炉渣除磷的实验研究[J]. 电站系统工程,2016,32(3):78−79,82.

    ZHAO Yang,TANG Yongzhi,WEI Jinhua. Experimental study on phosphorus removal in fossil fuel power plants[J]. Power System Engineering,2016,32(3):78−79,82.
    [81]
    乔爱萍. 浅谈燃煤锅炉炉渣处理方法[J]. 山西科技,2019,34(3):119−121.

    QIAO Aiping. Discussion on processing method of coal-fired boiler slag[J]. Shanxi Science and Technology,2019,34(3):119−121.
    [82]
    文科军,张衍杰,吴丽萍,等. 改性燃煤炉渣在人工湿地综合作用成效[J]. 水处理技术,2016,42(1):105−109.

    WEN Kejun,ZHANG Yanjie,WU Liping,et al. Synthetic actions of modified coal slag in constructed wetland[J]. Technology of Water Treatment,2016,42(1):105−109.
    [83]
    高瑜. 酸洗废液改性炉渣用于人工湿地基质除磷成效研究[D]. 青岛:青岛理工大学,2019.

    GAO Yu. Study on phosphorus removal efficiency of artificial wetland substratum by acid washing waste liquid modified slag[D]. Qingdao:Qingdao University of Technology,2019.
    [84]
    曾春慧,王嵬,王冬,等. 硫酸改性粉煤灰/炉渣混合物处理含磷废水的工艺研究[J]. 东北电力大学学报,2015,35(2):69−72.

    ZENG Chunhui,WANG Wei,WANG Dong,et al. Study on treatment of phosphorus wastewater with sulphuric acid modified fly ash/slag mixture[J]. Journal of Northeast Dianli University,2015,35(2):69−72.
    [85]
    YUAN N,ZHAO A J,HU Z K,et al. Preparation and application of porous materials from coal gasification slag for wastewater treatment:a review[J]. Chemosphere,2022,287:132227. doi: 10.1016/j.chemosphere.2021.132227
    [86]
    ZHANG J P,ZUO J,AI W D,et al. Preparation of mesoporous coal-gasification fine slag adsorbent via amine modification and applications in CO2 capture[J]. Applied Surface Science,2021,537:147938. doi: 10.1016/j.apsusc.2020.147938
    [87]
    LIU S,CHEN X T,AI W D,et al. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption[J]. Journal of Cleaner Production,2019,212:1062−1071. doi: 10.1016/j.jclepro.2018.12.060
    [88]
    琚安坤. 煤气化细渣制备介孔二氧化硅/炭复合填料及在聚丙烯中的应用[D]. 长春:吉林大学,2023.

    JU Ankun. Preparation of mesoporous silica/carbon composite filler from coal gasification fine slag and its application in polypropylene[D]. Changchun:Jilin University,2023.
    [89]
    WAGNER N J,MATJIE R H,SLAGHUIS J H,et al. Characterization of unburned carbon present in coarse gasification ash[J]. Fuel,2008,87(6):683−691. doi: 10.1016/j.fuel.2007.05.022
    [90]
    姚阳阳. 煤气化粗渣制备活性炭/沸石复合吸附材料及其性能研究[D]. 长春:吉林大学,2019.

    YAO Yangyang. Preparation and performance of activated carbon/zeolite composite adsorptive materials from coal gasification coarse slag[D]. Changchun:Jilin University,2019.
    [91]
    XU Y T,CHAI X L. Characterization of coal gasification slag-based activated carbon and its potential application in lead removal[J]. Environmental Technology,2018,39(3):382−391. doi: 10.1080/09593330.2017.1301569
    [92]
    高艳春,韩芳,韩丽娜,等. V/CGS低温NH3-SCR催化剂的制备及性能研究[J]. 现代化工,2020,40(8):67−72.

    GAO Yanchun,HAN Fang,HAN Lina,et al. Preparation of V/CGS catalyst for low temperature NH3-SCR and study on its activities[J]. Modern Chemical Industry,2020,40(8):67−72.
    [93]
    李恒. 煤气化细渣浮选残碳及其氧还原反应催化剂制备研究[D]. 上海:华东理工大学,2023.

    LI Heng. Study of coal gasification fine slag flotation and the oxygen reduction reaction catalyst preparation from residue carbon[D]. Shanghai:East China University of Science and Technology,2023.
    [94]
    艾伟东. 煤气化渣/有机高分子复合材料的制备及其性能研究[D]. 长春:吉林大学,2020.

    AI Weidong. The study on preparation and properties of coal gasification slag/polymer composites[D]. Changchun:Jilin University,2020.
    [95]
    齐放. 煤基固废非晶态硅调控制备多孔硅基材料基础研究[D]. 武汉:武汉科技大学,2023.

    QI Fang. Basic research on regulatory preparation of silicon-based materials by amorphous silicon resources in coal-based solid waste[D]. Wuhan:Wuhan University of Science and Technology,2023.
    [96]
    顾彧彦,乔秀臣. 煤气化细渣制备碳硅复合材料吸附去除水中Pb2+[J]. 化工环保,2019,39(1):87−93.

    GU Yuyan,QIAO Xiuchen. Adsorption of Pb2+ from water by carbon-silica composite prepared from coal gasification fine slag[J]. Environmental Protection of Chemical Industry,2019,39(1):87−93.
    [97]
    胡文豪,张建波,李少鹏,等. 煤气化渣制备聚合氯化铝工艺研究[J]. 洁净煤技术,2019,25(1):154−159.

    HU Wenhao,ZHANG Jianbo,LI Shaopeng,et al. Study on the preparation of polyaluminium chloride from coal gasification residue[J]. Clean Coal Technology,2019,25(1):154−159.
    [98]
    梁帮强,何勇,张文娟,等. 铁氧化物改性煤渣去除废水中磷的研究[J]. 西南大学学报(自然科学版),2011,33(7):114−117.

    LIANG Bangqiang,HE Yong,ZHANG Wenjuan,et al. Removal of phosphate from wastewater using iron oxide-modified coal cinder[J]. Journal of Southwest University (Natural Science Edition),2011,33(7):114−117.
    [99]
    谢小红. 改性煤渣处理含油废水的研究[J]. 北方环境,2011,23(9):60.
    [100]
    申改燕,李金洲,王敬. 关于煤化工气化炉渣资源化利用技术的探讨[J]. 能源与节能,2020(7):58−59,190.

    SHEN Gaiyan,LI Jinzhou,WANG Jing. Discussion on resource utilization technology of coal chemical gasification slag[J]. Energy and Energy Conservation,2020(7):58−59,190.
    [101]
    徐会超,袁本旺,孙焕青. 航天炉炉渣改性吸附羟基污染物的研究[J]. 煤化工,2019,47(5):43−46.

    XU Huichao,YUAN Benwang,SUN Huanqing. Study on adsorption of hydroxyl pollutants with modified slag of HT-L gasifier[J]. Coal Chemical Industry,2019,47(5):43−46.
    [102]
    王嘉麟. 煤气化灰渣活性炭的制备、改性及对络合铜的吸附性能研究[D]. 南京:南京信息工程大学,2023.

    WANG Jialin. Preparation,modification of coal gasified ash residue activated carbon[D]. Nanjing:Nanjing University of Information Science & Technology,2023.
    [103]
    DUAN L Y,HU X D,SUN D S,et al. Rapid removal of low concentrations of mercury from wastewater using coal gasification slag[J]. Korean Journal of Chemical Engineering,2020,37(7):1166−1173. doi: 10.1007/s11814-020-0546-x
    [104]
    李宇,王建敏,张弦,等. 高附加值煤气化渣基材料开发研究进展[J]. 材料导报,2023,37(23):94−105.

    LI Yu,WANG Jianmin,ZHANG Xian,et al. Research progress on the development of High-value-added materials by using coal gasification slag[J]. Materials Reports,2023,37(23):94−105.
    [105]
    刘崇国,匡建平,罗春桃,等. 煤气化灰渣资源化利用策略研究[J]. 当代化工研究,2019(17):23−25.

    LIU Chongguo,KUANG Jianping,LUO Chuntao,et al. Research on resource utilization strategy of coal gasification ash[J]. Modern Chemical Research,2019(17):23−25.
    [106]
    朱丹丹. 煤气化细渣在土壤改良及水污染治理中的资源化利用研究[D]. 长春:吉林大学,2022.

    ZHU Dandan. Study on the utilization of coal gasification fine slag in soil improvement and water pollution control[D]. Changchun:Jilin University,2022.
    [107]
    艾国,惠生娟,邓仲勋,等. 煤气化渣配施平菇菌糠对矿区土壤中紫花苜蓿幼苗根系的影响[J]. 湖南农业科学,2022(11):40−44.

    AI Guo,HUI Shengjuan,DNEG Zhongxun,et al. Effects of coal gasification slag combined with pleurotus ostreatus medium residue on root growth of alfalfa seedlings in soil of coal mine areas[J]. Hunan Agricultural Sciences,2022(11):40−44.
  • Related Articles

    [1]ZHANG Guibin, WANG Rongqiang, MA Junpeng, LYU Wenmao, ZHANG Wenquan, WANG Hailong. Study on solid-fluid coupling similarity simulation test of water-sand inrush during mining of shallow buried thin bedrock roof[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(6): 165-175. DOI: 10.12438/cst.2023-1227
    [2]SU Peili, YANG Shu, LIU Feng. Study on aggregate accumulation and growth mechanism in underground dynamic water cutting-off construction[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(5): 209-221. DOI: 10.12438/cst.2023-0706
    [3]WANG Hai, HUANG Xuanming, ZHANG Yan, CAO Haidong, SUN Hao, MIAO Hechao, TIAN Zenglin. Flexible magnetic suction impermeable membrane of vertical curtain water interception technology for strong seepage loose layer of coal mines[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(9): 180-188. DOI: 10.12438/cst.2022-0165
    [4]SU Peili, WEN Jiahao, GU Shuancheng, LIU Feng, LI Chong. Study on the migration law of aggregate sediment in the water inrush channel of coal rock mass[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(8): 200-207. DOI: 10.13199/j.cnki.cst.2022-0986
    [5]WANG Hai, DONG Shuning, SUN Yajun, WANG Hao. Lateral curtain interception technology and water conservation effect in groundwater abundant mines of China[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(7): 207-223. DOI: 10.13199/j.cnki.cst.QN21-014
    [6]DONG Shuning, MOU Lin. Study on construction technology of water blocking wall in hydrodynamic pathway of submerged mine[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 294-303. DOI: 10.13199/j.cnki.cst.2021.01.027
    [7]NIU Guangliang. Study on sectional grouting and sealing method of upward water inrush hole in underground mine[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (3).
    [8]Application of Grouting Water Sealing Technology to Mine Auxiliary Shaft Sinking in Shicaocun Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (11).
    [9]Detection and Grouting Water Sealing Technology of Crack Fissures for Water Inrush in Mine Heading Roadway[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (5).

Catalog

    Article views (250) PDF downloads (78) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return