Advance Search
YAN Zhiming,ZHANG Xinsheng,ZHANG Junsheng,et al. Research on mechanism of fracture formation, pressure relief, and permeabilityenhancement with composite technology of cavitation and CO2-frac[J]. Coal Science and Technology,2024,52(8):63−73. DOI: 10.12438/cst.2023-1091
Citation: YAN Zhiming,ZHANG Xinsheng,ZHANG Junsheng,et al. Research on mechanism of fracture formation, pressure relief, and permeabilityenhancement with composite technology of cavitation and CO2-frac[J]. Coal Science and Technology,2024,52(8):63−73. DOI: 10.12438/cst.2023-1091

Research on mechanism of fracture formation, pressure relief, and permeabilityenhancement with composite technology of cavitation and CO2-frac

Funds: 

Key Funding Project of National Natural Science Foundation of China (42230814)

More Information
  • Received Date: July 25, 2023
  • Available Online: July 08, 2024
  • Coal mine disasters caused by coal and gas outbursts are severe in China. Currently, static and dynamic technologies are mainly used to address the difficult gas control problem. The gas control mechanism of the composite technology of cavity making and gas phase fracturing is studied by comprehensively using three technical methods: 185 MPa high pressure CO2 impact coal sample, numerical simulation, and fiber optic strain monitoring. The research results indicate that ① under the action of CO2 gas phase fracturing stress waves, typical microstructures such as damage pits (DM) and three wing cracks (TRW) are newly formed on the surface of the coal matrix in coal samples. ② Under the action of static and dynamic loads, the original fractures in the coal seam within the range near the borehole center are reopened along the direction of vertical fracture, forming a radial multi-scale, tensile-dominant fracture with the borehole as the center. The fracture can fully equalize stress concentration zones and cause irreversible damage to the coal seam, with a stress disturbance range of 24 m. ③ Within the influence range of effective gas phase fracturing hole making composite technology, hole making holes help to improve the energy utilization efficiency of gas phase fracturing stress waves, avoid energy dissipation in ineffective vibration areas, fully connect the multi-scale fractures of the fracturing hole and hole making hole, making the coal seam fracture area wide, continuous, and fully depressurized, which fundamentally solves the problem of low permeability, difficult extraction, and high ground stress in the coal seam.

  • [1]
    LI H,LIN B,YANG W,et al. Effects of an underlying drainage gallery on coal bed methane capture effectiveness and the mechanical behavior of a gate road[J]. Journal of Natural Gas Science and Engineering,2015,27:616−631. doi: 10.1016/j.jngse.2015.09.012
    [2]
    方志明,李小春,李洪,等. 混合气体驱替煤层气技术的可行性研究[J]. 岩土力学,2010,31(10):3223−3229.

    FANG Zhiming ,LI Xiaochun,LI Hong,et al. Feasibility study of gas mixture enhancedcoalbed methane recovery technology[J]. Rock and Soil Mechanics,2010,31(10):3223−3229.
    [3]
    郝光生,马钱钱. 王坡煤矿本煤层预抽钻孔布置方式优化研究与效果考察[J]. 煤矿安全,2019,50(2):148−151.

    HAO Guangsheng,MA Qianqian. Optimization study and effect investigation of pre-pumping borehole layout in mining-coal bed of wangpo coal mine[J]. Safety in Coal Mines,2019,50(2):148−151
    [4]
    王德忠. 初采期密集钻孔代替高抽巷的瓦斯治理技术[J]. 山东煤炭科技,2020(5):95−97. doi: 10.3969/j.issn.1005-2801.2020.05.035

    WANG Dezhong. Gas control cechnique of ceplacing cigh-ctrengthening clley with cense crilling in carly cining[J]. Shandong Coal Science and Technology,2020(5):95−97. doi: 10.3969/j.issn.1005-2801.2020.05.035
    [5]
    薛俊华,肖健,杜轩宏,等. 我国煤矿保护层开采卸压瓦斯抽采现状及发展趋势[J]. 煤田地质与勘探,2023,51(6):50−61. doi: 10.12363/issn.1001-1986.22.11.0894

    XUE Junhua,XIAO Jian,DU Xuanhong,et al. Current situation and development trend of pressure-relief gas extraction in the protective layer mining in coal mines in China[J]. Coal Geology & Exploration,2023,51(6):50−61. doi: 10.12363/issn.1001-1986.22.11.0894
    [6]
    GUANHUA N,KAI D,SHANG L,et al. Gas desorption characteristics effected by the pulsating hydraulic fracturing in coal[J]. Fuel (Guildford),2019,236:190−200. doi: 10.1016/j.fuel.2018.09.005
    [7]
    TIAN L,CAO Y,CHAI X,et al. Best practices for the determination of low-pressure/permeability coalbed methane reservoirs,Yuwu Coal Mine,Luan mining area,China[J]. Fuel (Guildford),2015,160:100−107. doi: 10.1016/j.fuel.2015.07.082
    [8]
    DONGDONG C,WENRUI H,SHENGRONG X,et al. Increased permeability and coal and gas outburst prevention using hydraulic flushing technology with cross-seam borehole[J]. Journal of Natural Gas Science and Engineering,2020,73:103067. doi: 10.1016/j.jngse.2019.103067
    [9]
    WANG H,ENYUAN W,ZHONGHUI L,et al. Varying characteristics of electromagnetic radiation from coal failure during hydraulic flushing in coal seam[J]. Arabian Journal of Geosciences,2020,13(14):644. doi: 10.1007/s12517-020-05606-1
    [10]
    刘明举,赵文武,刘彦伟,等. 水力冲孔快速消突技术的研究与应用[J]. 煤炭科学技术,2010,38(3):58−61.

    LIU Mingju ,ZHAO Wenwu,LIU Yanwei,et al. Research and application of hydraulic flushing borehole to quickly elmi- inate outburst [J]. Coal Science and Technology,2010,38(3):58−61.
    [11]
    段贺明,王毅,金新,等. 随钻水力造穴技术工艺模拟与应用[J]. 煤矿安全,2022,53(4):87−93.

    DUAN Heming,WANG Yi,JIN Xin,et al. Process simulation and application of hydraulic cavitation while drilling technology[J]. Safety in Coal Mines,2022,53(4):87−93.
    [12]
    荆俊杰,于丽雅,延婧. 高瓦斯低渗煤层水力造穴增透技术优化研究[J]. 煤矿安全,2022,53(1):8−14.

    JING Junjie,YU Liya,YAN Jing. Research on optimization of hydraulic flushing and permeability enhancement technology in high gas and low permeability coal seam[J]. Safety in Coal Mines,2022,53(1):8−14.
    [13]
    王亮,廖晓雪,褚鹏,等. 瓦斯抽采穿层钻孔钻扩造穴卸压增透机理研究[J]. 煤炭科学技术,2021,49(5):75−82.

    WANG Liang,LIAO Xiaoxue,CHU Peng,et al. Study on mechanism of permeability improvement for gas drainage by cross-seam cavitation borehole[J]. Coal Science and Technology,2021,49(5):75−82.
    [14]
    刘勇,何岸,魏建平,等. 高压气体射流破煤应力波效应分析[J]. 煤炭学报,2016,41(7):1694−1700.

    LIU Yong,HE An,WEI Jianping,et al. Analysis of stress wave effect during coal breakage process by high pressure gas jet[J]. Journal of China Coal Society,2016,41(7):1694−1700
    [15]
    徐颖. 高压气体爆破采煤技术的发展及其在我国的应用[J]. 爆破,1998(1):67−69.

    XU Ying. The development of high-pressure gas blasting coal mining technology and its application in China[J]. Blasting,1998(1):67−69.
    [16]
    LI M,XINGPING L,JIANGUO Z,et al. Blast-casting mechanism and parameter optimization of a benched deep-hole in an opencast coal mine[J]. Shock and Vibration,2020,2020(1):1396−1483.
    [17]
    BAI X,ZHANG D,ZENG S,et al. An enhanced coalbed methane recovery technique based on CO2 phase transition jet coal-breaking behavior[J]. Fuel,2020,265:116912. doi: 10.1016/j.fuel.2019.116912
    [18]
    CAO Y,ZHANG J,ZHAI H,et al. CO2 gas fracturing:A novel reservoir stimulation technology in low permeability gassy coal seams[J]. Fuel,2017,203:197−207. doi: 10.1016/j.fuel.2017.04.053
    [19]
    HU G,HE W,SUN M. Enhancing coal seam gas using liquid CO2 phase-transition blasting with cross-measure borehole[J]. Journal of Natural Gas Science and Engineering,2018,60:164−173. doi: 10.1016/j.jngse.2018.10.013
    [20]
    曹运兴,田林,范延昌,等. 低渗煤层CO2气相压裂裂隙圈形态研究[J]. 煤炭科学技术,2018,46(6):46−51.

    CAO Yunxing,TIAN Lin,FAN Yanchang,et al. Study on cracking ring form of carbon dioxide gas phase fracturing in low permeability coal seam[J]. Coal Science and Technology,2018,46(6):46−51.
    [21]
    曹运兴,张军胜,田林,等. 低渗煤层定向多簇气相压裂瓦斯治理技术研究与实践[J]. 煤炭学报,2017,42(10):2631−2641.

    CAO Yunxing,ZHANG Junsheng,TIAN Lin,et al. Research and application of CO2 gas fracturing for gas control in low permeability coal seams[J]. Journal of China Coal Society,2017,42(10):2631−2641.
    [22]
    杨百舸,张军胜,令狐建设,等. 突出煤层CO2气相压裂高效抽采防突掘进技术[J]. 煤田地质与勘探,2021,49(3):85−94. doi: 10.3969/j.issn.1001-1986.2021.03.011

    YANG Baige,ZHANG Junsheng,LINGHU Jianshe,et al. An advanced CO2 gas-phase fracturing technology for efficient methane drainage,outburst prevention and excavation in outburst coal seam[J]. Coal Geology & Exploration,2021,49(3):85−94. doi: 10.3969/j.issn.1001-1986.2021.03.011
    [23]
    NIANYIN L,JIAJIE Y,CHAO W,et al. Fracturing technology with carbon dioxide:a review[J]. Journal of Petroleum Science and Engineering,2021,205:108793. doi: 10.1016/j.petrol.2021.108793
    [24]
    SHANG Z,WANG H,LI B,et al. Fracture processes in coal measures strata under liquid CO2 phase transition blasting[J]. Engineering Fracture Mechanics,2021,254:107902. doi: 10.1016/j.engfracmech.2021.107902
    [25]
    YANG B,WANG H,WANG B,et al. Digital quantification of fracture in full-scale rock using micro-CT images:a fracturing experiment with N2 and CO2[J]. Journal of Petroleum Science and Engineering,2021,196:107682. doi: 10.1016/j.petrol.2020.107682
    [26]
    赵龙,王兆丰,孙矩正,等. 液态CO2相变致裂增透技术在高瓦斯低透煤层的应用[J]. 煤炭科学技术,2016,44(3):75−79.

    ZHAO Long,WANG Zhaofeng,SUN Juzheng,et al. Appli-cation of permecbility improvment technology with liquid CO2 phase transition fracturing to high gassy and low permeability seam[J]. Coal Science and Technology,2016,44(3):75−79.
    [27]
    王兆丰,李豪君,陈喜恩,等. 液态CO2相变压裂煤层增透技术布孔方式研究[J]. 中国安全生产科学技术,2015,11(9):11−16.

    WANG Zhaofeng,LI Haojun,CHNE Xien,et al. Study on hole layout of liquid CO2 phase-transforming fracture technology for permeability improvement of coal seam[J]. Journal of Safety Science and Technology,2015,11(9):11−16.
    [28]
    张东明,白鑫,尹光志,等. 低渗煤层液态CO2相变射孔破岩及裂隙扩展力学机理[J]. 煤炭学报,2018,43(11):3154−3168.

    ZHANG Dongming,BAI Xin ,YIN Guangzhi,et al. Mech-anism of breaking and fracture expansion of liquid CO2 phase change jet fracturing in low-permeability coal seam[J]. Journal of China Coal Society,2018,43(11):3154−3168.
    [29]
    张宏伟,朱峰,李云鹏,等. 液态CO2压裂技术在冲击地压防治中的应用[J]. 煤炭科学技术,2017,45(12):23−29.

    ZANG Hongwei,ZHU Feng,LI Yunpeng,et al. Application of liquid CO2 fracturing technique in rock burst control[J]. Coal Science and Technology,2017,45(12):23−29.
    [30]
    BAIGE Y,YUNXING C,XINSHENG Z,et al. Research on pore-fracture structure alteration and gas emission Homogenization in an outburst coal seam induced by CO2 gas fracturing[J]. ACS Omega,2024,9(22):23917−23926. doi: 10.1021/acsomega.4c01784
    [31]
    白俊杰. 新景矿气相压裂与水力造穴相结合的增透效果研究[J]. 煤,2018,27(3):16−17.

    BAI Junjie. Research on the permeability enhancement of Xingjing gas and water combining with hydraulic cavern making[J]. Coal,2018,27(3):16−17.
    [32]
    郝智峰. 气相压裂−机械造穴复合增透技术在新景矿的应用[J]. 能源与环保,2020,42(10):7−11.

    HAO Zhifeng. Application of gas-phase fracturing-mechanical cave-making compound anti-reflection technology in Xinjing Mine[J]. China Energy and Environmental Protection,2020,42(10):7−11.
    [33]
    李定龙. 水力造穴、气相压裂综合增透技术在煤矿井下的应用[J]. 内蒙古煤炭经济,2019(5):118−119. doi: 10.3969/j.issn.1008-0155.2019.05.061

    LI Dinglong. Application of hydraulic caving ang gas fracturing comprehensive permeability enhancement technology in underground coal mine[J]. Inner Mongolia Coal Economy,2019(5):118−119. doi: 10.3969/j.issn.1008-0155.2019.05.061
    [34]
    史晓琼. 瓦斯钻孔综合增透技术研究与应用[J]. 山东煤炭科技,2020(11):90−93.

    SHI Xiaoqiong. Research and application of comprehensive permeability enhancement technology for gas drilling[J]. Shandong Coal Science and Technology,2019(11):90−93.
    [35]
    张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报,2001,26(1):40−44. doi: 10.3321/j.issn:0253-9993.2001.01.009

    ZHANG Hui. Genetical type of proes in coal reservoir and its research significance[J]. Journal of China Coal Society,2001,26(1):40−44. doi: 10.3321/j.issn:0253-9993.2001.01.009
    [36]
    杨昌永,常会珍,邵显华,等. 扫描电镜下不同煤体结构煤微孔隙特征研究[J]. 煤炭科学技术,2019,47(12):194−200.

    YANG Changyong ,CHANG Huizhen,SHAO Xianhua,et al. Study on micro-pore characteristics of structural coal in different coal bodies under scanning electron micros-copy [J]. Coal Science and Technology,2019,47(12):194−200.
    [37]
    MOU P,PAN J,WANG K,et al. Influences of hydraulic fracturing on microfractures of high-rank coal under different in-situ stress conditions[J]. Fuel,2021,287:119566. doi: 10.1016/j.fuel.2020.119566
    [38]
    LAUBACH S E,MARRETT R A,OLSON J E,et al. Characteristics and origins of coal cleat:a review[J]. International Journal of Coal Geology,1998,35(1):175−207.
    [39]
    张军胜,郭帅房,张新生,等. 冲击荷载下煤的塑性硬化-软化过程动态损伤本构模型[J]. 煤炭学报,2021,46(S2):759−769.

    ZHANG Junsheng,GUO Shuaifang,ZHANG Xinsheng,et al. Dynamic damage constitutive model of plastic hardening-softening process of coal under impacting load[J]. Journal of China Coal Society,2021,46(S2):759−769.

Catalog

    Article views (106) PDF downloads (49) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return