LIU Wenbo,ZHANG Shuguang,HUANG Xiang,et al. Study on symmetric creep model based on creep curves and parametric sensitivity analysis[J]. Coal Science and Technology,2024,52(7):48−56
. DOI: 10.12438/cst.2023-1084Citation: |
LIU Wenbo,ZHANG Shuguang,HUANG Xiang,et al. Study on symmetric creep model based on creep curves and parametric sensitivity analysis[J]. Coal Science and Technology,2024,52(7):48−56 . DOI: 10.12438/cst.2023-1084 |
In order to obtain the creep characteristics of the surrounding rock of the Dianzhong water diversion tunnel and to study the long-term stability of the surrounding rock of the tunnel, a fully automated triaxial developed by Wuhan Institute of Geotechnics, Chinese Academy of Sciences, is used to carry out the uniaxial creep test of green mud shale. The axial creep curve and isochronous stress-strain curve of green mud shale are obtained. And the long-term strength value of green mud shale is determined based on the characteristics of isochronous stress-strain curve. Based on the classical creep curve characteristics and a large number of experimental creep curves, it is found that the equations describing the attenuation creep curve can be treated by symmetry. Therefore, it is assumed that the acceleration curve and the decay creep curve are symmetric about the midpoint of the stable creep curve. An accelerated creep model based on the symmetry of the creep curve is obtained. And a set of methods to determine the parameters of the creep model is proposed based on the characteristics of the creep test curve. Finally, the parameters introduced into the accelerated creep model for sensitivity analysis. The parameters introduced into the model have a clear physical meaning. The results show that with the increasing axial stress, the instantaneous strain value and creep deformation value of the rock are also increasing, and the instantaneous strain of the rock under the first stage load accounts for the largest ratio of the total creep deformation. The established creep model can not only well describe the attenuation creep and stable creep deformation law of green mud shale, it also better make up for the defects of the Nishihara model that cannot describe the accelerated creep. The agreement between the model curve and the test curve is much higher than that between the model and the test curve, and the correlation coefficients between the model curve and the test curve under different stresses are all above 0.90. Meanwhile, the validation of different types of test curves and model curves also shows that the model can be applied to the prediction of creep curves of different types of rocks. Finally, the value of parameter j is introduced to control the deformation rate and the time to enter accelerated creep. The value of parameter k controls the creep time and the creep rate in the accelerated stage.
[1] |
刘新喜,李盛南,周炎明,等. 高应力泥质粉砂岩蠕变特性及长期强度研究[J]. 岩石力学与工程学报,2020,39(1):138−146.
LIU Xinxi,LI Shengnan,ZHOU Yanming,et al. Study on creep behavior and long-term strength of argillaceous siltstone under high stresses[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(1):138−146.
|
[2] |
张亮亮,王晓健,周瑞鹤. 一种新的岩石非线性黏弹塑性蠕变模型研究[J]. 力学季刊,2020,41(1):116−124.
ZHANG Liangliang,WANG Xiaojian,ZHOU Ruihe. A new nonlinear viscoelastic-plastic creep model for rocks[J]. Chinese Quarterly of Mechanics,2020,41(1):116−124.
|
[3] |
韩阳,谭跃虎,李二兵,等. 岩石非定常Burgers蠕变模型及其参数识别[J]. 工程力学,2018,35(3):210−217. doi: 10.6052/j.issn.1000-4750.2017.01.0025
HAN Yang,TAN Yuehu,LI Erbing,et al. Non-stationary Burgers creep model of rock and its parameter identification[J]. Engineering Mechanics,2018,35(3):210−217. doi: 10.6052/j.issn.1000-4750.2017.01.0025
|
[4] |
HU B,YANG S Q,XU P. A nonlinear rheological damage model of hard rock[J]. Journal of Central South University,2018,25(7):1665−1677. doi: 10.1007/s11771-018-3858-9
|
[5] |
ZHAO Y L,ZHANG L Y,WANG W J,et al. Separation of elastoviscoplastic strains of rock and a nonlinear creep model[J]. International Journal of Geomechanics,2018,18(1):04017129. doi: 10.1061/(ASCE)GM.1943-5622.0001033
|
[6] |
李德建,饶远昊,张鸣原,等. 岩石蠕变试验非定常参数流变模型及计算机仿真[J]. 应用基础与工程科学学报,2022,30(6):1522−1533.
LI Dejian,RAO Yuanhao,ZHANG Mingyuan,et al. Rheological model with non-constant parameters and computer simulation of creep experiment of rock[J]. Journal of Basic Science and Engineering,2022,30(6):1522−1533.
|
[7] |
刘振,杨圣奇,柏正林,等. 循环加卸载下闪长玢岩蠕变特性及损伤本构模型[J]. 工程科学学报,2022,44(1):143−151. doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201014
LIU Zhen,YANG Shengqi,BAI Zhenglin,et al. Creep property and damage constitutive model of dioritic porphyrite under cyclic loading-unloading[J]. Chinese Journal of Engineering,2022,44(1):143−151. doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201014
|
[8] |
孙晓明,缪澄宇,姜铭,等. 基于改进西原模型的不同含水率砂岩蠕变实验及理论研究[J]. 岩石力学与工程学报,2021,40(12):2411−2420.
SUN Xiaoming,MIAO Chengyu,JIANG Ming,et al. Experimental and theoretical study on creep behaviors of sandstone with different moisture contents based on modified Nishihara model[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(12):2411−2420.
|
[9] |
崔阿能,胡斌,崔凯,等. 基于应力-时间双阈值条件的岩石黏弹塑性蠕变模型[J]. 公路交通科技,2022,39(2):125−132. doi: 10.3969/j.issn.1002-0268.2022.02.015
CUI Aneng,HU Bin,CUI Kai,et al. A model of rock viscoelastoplastic creep based on double stress-time thresholds[J]. Journal of Highway and Transportation Research and Development,2022,39(2):125−132. doi: 10.3969/j.issn.1002-0268.2022.02.015
|
[10] |
宋勇军,张磊涛,任建喜,等. 冻融环境下红砂岩三轴蠕变特性及其模型研究[J]. 岩土工程学报,2021,43(5):841−849. doi: 10.11779/CJGE202105007
SONG Yongjun,ZHANG Leitao,REN Jianxi,et al. Triaxial creep properties and model of red sandstone under freeze-thaw environment[J]. Chinese Journal of Geotechnical Engineering,2021,43(5):841−849. doi: 10.11779/CJGE202105007
|
[11] |
张亮亮,王晓健. 岩石黏弹塑性损伤蠕变模型研究[J]. 岩土工程学报,2020,42(6):1085−1092. doi: 10.11779/CJGE202006012
ZHANG Liangliang,WANG Xiaojian. Viscoelastic-plastic damage creep model for rock[J]. Chinese Journal of Geotechnical Engineering,2020,42(6):1085−1092. doi: 10.11779/CJGE202006012
|
[12] |
张亮亮,王晓健. 一种新的岩石非线性损伤蠕变模型[J]. 应用力学学报,2020,37(1):372−377,494.
ZHANG Liangliang,WANG Xiaojian. A new nonlinear damage creep model of rocks[J]. Chinese Journal of Applied Mechanics,2020,37(1):372−377,494.
|
[13] |
姜鹏,潘鹏志,赵善坤,等. 基于应变能的岩石黏弹塑性损伤耦合蠕变本构模型及应用[J]. 煤炭学报,2018,43(11):2967−2979.
JIANG Peng,PAN Pengzhi,ZHAO Shankun,et al. A coupled elasto-viscoplastic damage model based on strain energy theory of rock and application[J]. Journal of China Coal Society,2018,43(11):2967−2979.
|
[14] |
ABU AL-RUB R K,DARABI M K,KIM S M,et al. Mechanistic-based constitutive modeling of oxidative aging in aging-susceptible materials and its effect on the damage potential of asphalt concrete[J]. Construction and Building Materials,2013,41:439−454. doi: 10.1016/j.conbuildmat.2012.12.044
|
[15] |
YANG S Q,JING H W,CHENG L. Influences of pore pressure on short-term and creep mechanical behavior of red sandstone[J]. Engineering Geology,2014,179:10−23. doi: 10.1016/j.enggeo.2014.06.016
|
[16] |
陈有亮,陈奇键,肖鹏,等. 考虑水化学损伤的岩石真三轴蠕变本构模型[J]. 力学学报,2023,55(1):159−168. doi: 10.6052/0459-1879-22-329
CHEN Youliang,CHEN Qijian,XIAO Peng,et al. A true triaxial creep constitutive model for rock considering hydrochemical damage[J]. Chinese Journal of Theoretical and Applied Mechanics,2023,55(1):159−168. doi: 10.6052/0459-1879-22-329
|
[17] |
冯晓伟,王伟,王如宾,等. 考虑水化学损伤的砂岩流变损伤本构模型[J]. 岩土力学,2018,39(9):3340−3346,3354.
FENG Xiaowei,WANG Wei,WANG Rubin,et al. A rheological damage model of sandstone under water-rock chemical interaction[J]. Rock and Soil Mechanics,2018,39(9):3340−3346,3354.
|
[18] |
WANG You,LU Xiaoyu,ZHAI Guoliang. Non-stationary creep model for rock based on Nishihara model[J]. Science Technology and Engineering,2022,22(2):676−682.
|
[19] |
薛东杰,路乐乐,易海洋,等. 考虑温度和体积应力的分数阶蠕变损伤Burgers模型[J]. 岩石力学与工程学报,2021,40(2):315−329.
XUE Dongjie,LU Lele,YI Haiyang,et al. A fractional Burgers model for uniaxial and triaxial creep of damaged salt-rock considering temperature and volume-stress[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(2):315−329.
|
[20] |
刘德峰,刘鹏涛,张臻悦,等. 轴压水压耦合作用下裂隙砂岩蠕变特性[J]. 工程科学与技术,2021,53(1):94−103.
LIU Defeng,LIU Pengtao,ZHANG Zhenyue,et al. Creep characteristics of fractured sandstone under the coupling action of axial compression and hydraulic pressure[J]. Advanced Engineering Sciences,2021,53(1):94−103.
|
[21] |
杨逾,孙博一,孙艺丹,等. 考虑弹性模量退化的砂岩非定常蠕变模型[J]. 煤炭科学技术,2022,50(5):110−119.
YANG Yu,SUN Boyi,SUN Yidan,et al. Unsteady creep model of sandstone with elastic modulus degradation[J]. Coal Science and Technology,2022,50(5):110−119.
|
[22] |
赵伦洋,赖远明,牛富俊,等. 硬脆性岩石多尺度损伤蠕变模型及长期强度研究[J]. 中南大学学报(自然科学版),2022,53(8):3071−3080.
ZHAO Lunyang,LAI Yuanming,NIU Fujun,et al. Multi-scale damage creep model and long-term strength for hard brittle rocks[J]. Journal of Central South University (Science and Technology),2022,53(8):3071−3080.
|
[23] |
范秋雁,阳克青,王渭明. 泥质软岩蠕变机制研究[J]. 岩石力学与工程学报,2010,29(8):1555−1561.
FAN Qiuyan,YANG Keqing,WANG Weiming. Study of creep mechanism of argillaceous soft rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(8):1555−1561.
|
[24] |
LIU W B,ZHANG S G,SUN B Y,et al. Creep characteristics and time-dependent creep model of tunnel lining structure concrete[J]. Mechanics of Time-Dependent Materials,2021,25(3):365−382. doi: 10.1007/s11043-020-09449-x
|
[25] |
LIU W B,ZHOU H,ZHANG S G,et al. Constitutive model of concrete creep damage considering the deterioration of creep parameters[J]. Construction and Building Materials,2021,308:125047. doi: 10.1016/j.conbuildmat.2021.125047
|
[26] |
王兆会,孙文超,王雪冰,等. 预制裂隙类岩石试件表面变形场演化与裂隙扩展机理研究[J]. 煤炭科学技术,2023,51(10):72−82.
WANG Zhaohui,SUN Wenchao,WANG Xuebing,et al. Surface deformation field and fracture propagation mechanism of rock-like specimen with pre-existing fracture[J]. Coal Science and Technology,2023,51(10):72−82.
|
[27] |
LIANG X,FU B,LIANG Z Z,et al. A novel structural model for strainburst hazard considering the surrounding rock-burst volume interaction and its use to obtain a strength criterion for strainbursts[J]. Environmental Earth Sciences,2022,81(7):200. doi: 10.1007/s12665-022-10319-7
|
[28] |
LIU W B,ZHANG S G. An improved unsteady creep model based on the time dependent mechanical parameters[J]. Mechanics of Advanced Materials and Structures,2020,28:1838−1848.
|
[29] |
范庆忠,高延法,崔希海,等. 软岩非线性蠕变模型研究[J]. 岩土工程学报,2007,29(4):505−509. doi: 10.3321/j.issn:1000-4548.2007.04.006
FAN Qingzhong,GAO Yanfa,CUI Xihai,et al. Study on nonlinear creep model of soft rock[J]. Chinese Journal of Geotechnical Engineering,2007,29(4):505−509. doi: 10.3321/j.issn:1000-4548.2007.04.006
|
[30] |
石多奇,杨晓光. 时间硬化蠕变本构方程耦合损伤的应用研究[J]. 航空动力学报,2004,19(1):12−16. doi: 10.3969/j.issn.1000-8055.2004.01.003
SHI Duoqi,YANG Xiaoguang. Application of the time-hardening creep law coupling damage[J]. Journal of Aerospace Power,2004,19(1):12−16. doi: 10.3969/j.issn.1000-8055.2004.01.003
|
[1] | LI Yangyang, ZHANG Shichuan, SHEN Baotang, XU Yadong, DANG Jinming, HOU Jiaqi. Subsection amplification cyclic deterioration mechanism of creep damaged coal[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(5): 64-76. DOI: 10.12438/cst.2024-0164 |
[2] | YANG Yu, SUN Boyi, SUN Yidan, LI Min, YAN Xiangzhi. Unsteady creep model of sandstone with elastic modulus degradation[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(5). |
[3] | WANG Bo, LIU Chongyang, CHEN Xuexi, LU Changliang, HUANG Zikang, HU Shiyu. Experimental study on range of strength limit neighborhood of red sandstone under effect of creep disturbance[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(9): 54-60. |
[4] | LU Mingxing, MA Zhanwu, TIAN Shuai. Study on creep characteristics and unsteady creep model of roadway surrounding rock[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(8): 67-72. |
[5] | LYU Hongmiao, LIU Wenbo. Study on creep damage model of granite in Gaode Coal Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (3). |
[6] | WANG Yongyan, SUN Man, GUO Peng, ZHANG Zuoliang, ZHANG Yubiao. Experimental study on numerical simulation of creep characteristics for soft rock of similar model[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (10). |
[7] | WANG Bo, LIU Chongyang, GAO Changyan, YAN Gang, YANG Jianlin, GU Changwan. Experimental study on uniaxial creep disturbance of rock in the neighborhood of strength limit[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (7). |
[8] | PU Hai, CAO Lili, NI Hongyang. Study on seepage-creep model of coal measure sandstonebased on fractional order calculus[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (1). |
[9] | Lai Ronghui Chen Yanan Chen Zihai, . Study on energy dissipation features of red sandstone creep failure under step loading and unloading tests[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (6). |
[10] | Creep Surrounding Rock Control Technology of Rise Group Roadway in Abnormal Ground Stress Zone[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (8). |
1. |
李建敏. 干密度对黄土邓肯-张模型参数的影响规律研究. 山西交通科技. 2025(03)
![]() | |
2. |
张亮亮,程桦,王晓健. 基于统计规律的岩石非稳态蠕变经验模型研究. 岩石力学与工程学报. 2025(01): 164-173 .
![]() | |
3. |
朱航宇,李剑光,杨均红,胡懿成,辛在平. 适于富水区域围岩长期稳定性的蠕变模型研究. 科技通报. 2025(04): 73-79+85 .
![]() |