Advance Search
LYU Yuhan,ZHANG Muye,BAO Jiusheng,et al. UWB localization of unmanned monorail crane with dual tags based on UKF weighted C-T fusion algorithm[J]. Coal Science and Technology,2024,52(S2):221−235. DOI: 10.12438/cst.2023-1082
Citation: LYU Yuhan,ZHANG Muye,BAO Jiusheng,et al. UWB localization of unmanned monorail crane with dual tags based on UKF weighted C-T fusion algorithm[J]. Coal Science and Technology,2024,52(S2):221−235. DOI: 10.12438/cst.2023-1082

UWB localization of unmanned monorail crane with dual tags based on UKF weighted C-T fusion algorithm

More Information
  • Received Date: July 24, 2023
  • Monorail cranes are crucial auxiliary transportation equipment in underground coal mines, currently advancing towards intelligent and unmanned operation. To enhance the precision of unmanned monorail crane positioning, research has been conducted on a dual-tag UWB positioning method based on the UKF filtering and weighted C-T fusion algorithm. Firstly, considering the structural characteristics of monorail cranes, a dual-tag UWB positioning system was designed, comprising a dual-tag positioning information collection layer, positioning data transmission layer, and positioning coordinate resolution layer. Secondly, the Chan algorithm's UWB positioning results were employed as initial values for the Taylor algorithm, ensuring the convergence and com-putational efficiency of the Taylor algorithm. Additionally, by predefining the monorail crane length and obtaining positioning compensation error from dual-tag positioning data, the error was incorporated into the Taylor algorithm to further enhance positioning accuracy. Simulation results demonstrated a 44% improvement in positioning accuracy with the optimized algorithm.Subsequently, the Unscented Kalman Filter (UKF) was applied for filtering optimization of the weighted C-T fusion algorithm, enhancing the positioning system's accuracy in Non-Line-of-Sight (NLOS) environments. Simulation results indicated that the UKF-filtered opti-mization increased positioning accuracy by over 7.8% on straight segments and over 10.6% on curved segments. Moreover, as NLOS errors increased, positioning effectiveness significantly improved. Finally, real-world experiments were conducted in a coal mine monorail test field, revealing that the dual-tag weighted C-T fusion positioning algorithm based on UKF filtering achieved static positioning accuracy below 20 cm, dynamic positioning accuracy below 30 cm, and an overall positioning accuracy at the decimeter level. Stability and reliability were also enhanced, meeting the positioning requirements for unmanned monorail cranes in under-ground environments. The research on decimeter-level precision monorail crane positioning systems is crucial for the intelligent and unmanned efficient transportation of monorail cranes in mines.

  • [1]
    吴杞康,鲍久圣,王旭,等. 基于确定性规则的混合动力型高速单轨吊控制策略[J]. 煤炭科学技术,2023,51(S2):240−251.

    WU Qikang,BAO Jiusheng,WANG Xu,et al. A control strategy for hybrid high speed monorail crane based on deterministic rules[J]. Coal Science and Technology,2023,51(S2):240−251.
    [2]
    胡青松,孟春蕾,李世银,等. 矿井无人驾驶环境感知技术研究现状及展望[J]. 工矿自动化,2023,49(6):128−140.

    HU Qingsong,MENG Chunlei,LI Shiyin,et al. Research status and prospects of mine unmanned driving environment perception technology[J]. Industry and Mine Automation,2023,49(6):128−140.
    [3]
    鲍久圣,张牧野,葛世荣,等. 基于改进A*和人工势场算法的无轨胶轮车井下无人驾驶路径规划[J]. 煤炭学报,2022,47(3):1347−1360.

    BAO Jiusheng,ZHANG Muye,GE Shirong,et al. Underground unmanned driving path planning for trackless rubber wheeled vehicles based on improved A* and artificial potential field algorithm[J]. Journal of China Coal Society,2022,47(3):1347−1360.
    [4]
    刘泽朝,李敬兆,郑昌陆,等. 矿井无人驾驶单轨吊安全性能关键参数识别[J]. 煤炭科学技术,2023,51(S1):372-382.

    LIU Zechao,LI Jingzhao,ZHENG Changlu,et al. Safety performance of unmanned monorail cranes in mines key parameters identification research[J] Coal Science and Technology,2023,51(S1):372-382.
    [5]
    葛世荣. 煤矿机器人现状及发展方向[J]. 中国煤炭,2019,45(7):18−27. doi: 10.3969/j.issn.1006-530X.2019.07.004

    GE Shirong. The current situation and development direction of coal mining robots[J]. China Coal,2019,45(7):18−27. doi: 10.3969/j.issn.1006-530X.2019.07.004
    [6]
    HE Xu,MO Lingfei,WANG Qing. An attention-assisted UWB ranging error compensation algorithm[J]. IEEE Wireless Communications Letters,2023,12(3):421−425. doi: 10.1109/LWC.2022.3229104
    [7]
    LYU Ziteng,ZHANG Xin,CHEN Dongdong,et al. The development and progress of the UWB physical layer[J]. Micromachines,2023,14(1):1−8.
    [8]
    孙继平,蒋恩松. 测距平面约束下投影巷道空间的扩频定位方法[J]. 煤炭学报,2017,42(5):1339−1345.

    SUN Jiping,JIANG Ensong. Spread spectrum localization method for projecting tunnel space under distance measurement plane constraints[J]. Journal of China Coal Society Science,2017,42(5):1339−1345.
    [9]
    邵小强,李康乐,陈熙,等. 基于改进卡尔曼滤波和参数拟合的矿井TOA定位方法[J]. 煤炭学报,2019,44(5):1616−1624.

    SHAO Xiaoqiang,LI Kangle,CHEN Xi,et al. Mine TOA location method based on improved Kalman filter and parameter fitting[J]. Journal of China Coal Society,2019,44(5):1616−1624.
    [10]
    胡青松,张申,吴立新,等. 矿井动目标定位:挑战、现状与趋势[J]. 煤炭学报,2016,41(5):1059−1068.

    HU Qingsong,ZHANG Shen,WU Lixin,et al. Positioning of moving targets in mines:challenges,current status,and trends[J]. Journal of China Coal Society,2016,41(5):1059−1068.
    [11]
    XIE Jingli,WANG Wei,LIU Xinyi,et al. Identification of NLOS based on soft decision method[J]. IEEE Wireless Communications Letters,2023,12(4):703−707. doi: 10.1109/LWC.2023.3240846
    [12]
    POULOSE A,STEVEN E O,KIM M,et al. Localization error analysis of indoor positioning system based on UWB measurements[C]//Eleventh International Conference on Ubiquitous and Future Networks(ICUFN),2019:84−88.
    [13]
    Hamaguchi K,Kohno R. Development of experimental TDOA system test-bed for indoor applications[C]//IEEE International Conference on Ultra-Wideband,2008:201−204.
    [14]
    马宏伟,段优优,薛旭升,等. 煤矿智能单轨吊研究进展与关键技术[J]. 工矿自动化,2023,49(6):57−67.

    MA Hongwei,DUAN Youyou,XUE Xusheng,et al. Research progress and key technologies of intelligent monorail cranes in coal mines[J]. Industrial and Mining Automation,2023,49(6):57−67.
    [15]
    周爱国,蒲家坤,曾智杰,等. 基于UWB的LSM-Taylor级联车辆定位算法[J]. 测控技术,2021,40(6):65−70.

    ZHOU Aiguo,PU Jiakun,ZENG Zhijie,et al. LSM-Taylor cascaded vehicle localization algorithm based on UWB[J]. Measurement and Control Technology,2021,40(6):65−70.
    [16]
    江歌,李志华. 非视距环境下的超宽带室内定位算法[J]. 计算机测量与控制,2018,26(11):203−207.

    JIANG Ge,LI Zhihua. Ultra wideband indoor positioning algorithm in non line of sight environments[J]. Computer Measurement and Control,2018,26(11):203−207.
    [17]
    KOLAKOWSKI M,DJAJA-JOSKO V. TDOA-TWR based positioning algorithm for UWB localization system[C]//21st International Conference on Microwave,Radar and Wireless Communications(MIKON),2016:1-4.
    [18]
    杨秀建,皇甫尚昆,颜绍祥. 基于改进UKF的UWB/IMU/里程计融合定位方法[J]. 中国惯性技术学报,2023,31(5):462−471.

    YANG Xiujian,HUANGFU Shangkun,YAN Shaoxiang. UWB/IMU/odometer fusion localization method based on improved UKF[J]. Journal of Chinese Inertial Technology,2023,31(5):462−471.
    [19]
    侯华,李峻辉,代超娜,等. 井下人员超宽带精确定位算法[J]. 电子测量技术,2023,46(4):35−40.

    HOU Hua,LI Junhui,DAI Chaona,et al. Ultra wideband precise positioning algorithm for underground personnel[J]. Electronic Measurement Technology,2023,46(4):35−40.
    [20]
    肖辉春,梁晓林. 超宽带室内定位算法[J]. 电讯技术,2019,59(7):755−760. doi: 10.3969/j.issn.1001-893x.2019.07.002

    XIAO Huichun,LIANG Xiaolin. Ultra wideband indoor positioning algorithm[J]. Telecommunication Engineering,2019,59(7):755−760. doi: 10.3969/j.issn.1001-893x.2019.07.002
    [21]
    CAI Xufen,YE Long,ZHANG Qin. Ensemble learning particle swarm optimization for real-time UWB indoor localization[J]. EURASIP Journal on Wireless Communications and Networking,2018,125(1):1−15.
    [22]
    李新春,阳士宇,张玉琛,等. 削减NLOS误差的UWB室内定位算法[J]. 重庆邮电大学学报,2022,34(5):758−765.

    LI Xinchun,YANG Shiyu,ZHANG Yuchen,et al. UWB indoor positioning algorithm for reducing NLOS errors[J]. Journal of Chongqing University of Posts and Telecommunications,2022,34(5):758−765.
    [23]
    ZHANG Kuiyuan,CHEN Pengpeng,MA Tianbing,et al. On-Demand precise tracking for Energy-Constrained UAVs in underground coal mines[J]. IEEE Transactions on Instrumentation and Measurement,2022,71(1):1−14.
    [24]
    QIN Zhenyang,MENG Zhaozong,LI Zhen,et al. Compensating the NLOS occlusion errors of UWB for pedestrian localization with MIMU[J]. IEEE Sensors Journal,2023,23(11):12146−12158. doi: 10.1109/JSEN.2023.3266433
    [25]
    张勇刚,黄玉龙,武哲民,等. 一种高阶无迹卡尔曼滤波方法[J]. 自动化学报,2014,40(5):838−848.

    ZHANG Yonggang,HUANG Yulong,WU Zhemin,et al. A high-order unscented kalman filter filter method[J]. Acta Automatica Sinica,2014,40(5):838−848.
    [26]
    陈静,缪坤坤,FELIX Manirankunda. 基于UKF优化多三角加权定位算法的UWB室内定位系统设计[J]. 无线电工程,2023,53(3):669−677. doi: 10.3969/j.issn.1003-3106.2023.03.021

    CHEN Jing,MIAO Kunkun,FELIX Manirankunda. Design of UWB indoor positioning system based on UKF optimized multi triangle weighted positioning algorithm[J]. Radio Engineering,2023,53(3):669−677. doi: 10.3969/j.issn.1003-3106.2023.03.021
  • Related Articles

    [1]DAI Guisheng, SUN Tianshan. Multi scale fusion point cloud denoising method based on improved statistical filtering[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(6): 480-492. DOI: 10.12438/cst.2025-0118
    [2]FENG Zeyu, DONG Xianshu, CHEN Ruxia. The relationship between permeability and pore structure of coal slime filter cake based on fractal characteristics[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(10): 312-322. DOI: 10.13199/j.cnki.cst.2022-2207
    [3]GONG Yun, XIE Xinyu. Research on coal mine underground image recognition technology based on homomorphic filtering method[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(3): 241-250. DOI: 10.13199/j.cnki.cst.2021-0774
    [4]GUO Jikun, ZHAO Qinɡ, CHEN Sihan. Mine ultra-wide-band radar compression sensing imaging algorithm based on phase compensation[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(1).
    [5]WANG Donghui, LIU Wenli, XU Hongxiang. Study on subsection filtration for coal slurry based on regulation ofpore structure of filter cake[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (2).
    [6]WANG Bo LIU Zhiqiang DU Jianmin WANG Shuai FAN Hao, . Design method of double platform sinking headframe of large mine shaft[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (11).
    [7]Ren Zhiyong. Generated mechanism and control method of parasitic power in double axle drive vehicle[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (2).
    [8]FENG Wen-yi. Application of Three-Level and Four Bridge Arms Active Power Filter in Coal Mine Grid[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (8).
    [9]Analysis and Study on Setting Load of Double Telescopic Leg in Hydraulic Powered Support[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (2).
    [10]Design on Double Closed Loop Speed Regulation System of Mine AC Hoist[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (10).

Catalog

    Article views (15) PDF downloads (3) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return