ZHOU Gang,YANG Siao,WANG Kaili,et al. TEPA modification Cu-BTC@SiO2 preparation of composite aerogel and its CO2 capture characteristics[J]. Coal Science and Technology,2024,52(7):235−247
. DOI: 10.12438/cst.2023-1044Citation: |
ZHOU Gang,YANG Siao,WANG Kaili,et al. TEPA modification Cu-BTC@SiO2 preparation of composite aerogel and its CO2 capture characteristics[J]. Coal Science and Technology,2024,52(7):235−247 . DOI: 10.12438/cst.2023-1044 |
Under the dual strategic background of “carbon peaking and carbon neutrality”, CO2 capture has become an important task at present. Solid adsorbent adsorption is widely used in CO2 capture process, among which SiO2 aerogel has the advantages of low cost, flexible synthesis method, high separation efficiency, easy surface modification, etc. However, SiO2 aerogel materials also have some defects, such as low CO2/N2 adsorption selectivity and CO2 adsorption capacity to be further improved. To address the above issues, this article has prepared a Cu-BTC@SiO2 Composite aerogel CO2 adsorption material. Firstly, the surface chemistry and pore structure were systematically characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption and desorption tests. Then, the CO2 adsorption capacity, selective adsorption, and cyclic adsorption were studied through carbon dioxide adsorption testing. Finally, a combination of theoretical and experimental research was used to study the CO2 adsorption kinetics of the adsorbent. The results show that the SiO2 aerogel compounded with Cu BTC has a high specific surface area of 726.431 m2/g, a specific surface area of 570.781 m2/g, and a high microporous volume of 0.184 cm3/g. After loading tetraethylenepentamine(TEPA), the adsorption capacity of CO2 is up to 2.95 mmol/g, and the selective adsorption is 40.8, after 10 cycles of CO2 adsorption, the adsorption capacity decreased slightly. Therefore, TEPA-modified Cu-BTC@SiO2 composite aerogels can significantly improve the CO2 adsorption performance of SiO2 aerogels. The metal organic framework material Cu BTC with rich micropore structure is compounded with SiO2 aerogel, and is prepared by the sol gel method Cu-BTC@SiO2 Composite aerogel to make the composite have hierarchical micro/mesoporous structure and enhance the physical adsorption of CO2 by enhancing the intermolecular force (van der Waals force); The material is impregnated with TEPA, and the chemical adsorption of CO2 is enhanced by acid-base interaction between organic amine and acid gas.
[1] |
HAJIYEV N,ABDIMOMYNOVA A,TRUKHAN D. Global and local aspects of world energy consumption:forecast and risks[J]. Proceedings of the Institution of Civil Engineers - Energy,2023,176(4):197−214. doi: 10.1680/jener.21.00105
|
[2] |
ZHAO J,JIANG Q Z,DONG X C,et al. How does industrial structure adjustment reduce CO2 emissions? Spatial and mediation effects analysis for China[J]. Energy Economics,2022,105:105704. doi: 10.1016/j.eneco.2021.105704
|
[3] |
YU J N,TANG Y M,CHAU K Y,et al. Role of solar-based renewable energy in mitigating CO2 emissions:evidence from quantile-on-quantile estimation[J]. Renewable Energy,2022,182:216−226. doi: 10.1016/j.renene.2021.10.002
|
[4] |
KHEZRI M,HESHMATI A,KHODAEI M. Environmental implications of economic complexity and its role in determining how renewable energies affect CO2 emissions[J]. Applied Energy,2022,306:117948. doi: 10.1016/j.apenergy.2021.117948
|
[5] |
TOMPKINS E L,AMUNDSEN H. Perceptions of the effectiveness of the United Nations Framework Convention on Climate Change in advancing national action on climate change[J]. Environmental Science & Policy,2008,11(1):1−13.
|
[6] |
王科,李思阳. 中国碳市场回顾与展望(2022)[J]. 北京理工大学学报(社会科学版),2022,24(2):33−42.
WANG Ke,LI Siyang. China’s carbon market:reviews and prospects(2022)[J]. Journal of Beijing Institute of Technology (Social Sciences Edition),2022,24(2):33−42.
|
[7] |
JIANG K,ASHWORTH P,ZHANG S Y,et al. China’s carbon capture,utilization and storage (CCUS) policy:a critical review[J]. Renewable and Sustainable Energy Reviews,2020,119:109601. doi: 10.1016/j.rser.2019.109601
|
[8] |
ATWOLI L,BAQUI A H,BENFIELD T,et al. Call for emergency action to limit global temperature increases,restore biodiversity,and protect health[J]. The Wester Journal of Emergenay Medicine. 2021,385(12):1134−1137. doi: 10.1056/NEJMe2113200
|
[9] |
关蕴奇,姜勇刚,冯军宗,等. 无机纤维增强SiO2气凝胶隔热复合材料的研究进展[J]. 材料导报,2017,31(S1):429−434.
GUAN Yunqi,JIANG Yonggang,FENG Junzong,et al. Research progress on inorganic fiber reinforced silica aerogel insulation composites[J]. Materials Reports,2017,31(S1):429−434.
|
[10] |
李明明,王坤杰,张晓虎. 纤维增强SiO2气凝胶复合材料研究进展[J]. 化工新型材料,2017,45(3):19−21.
LI Mingming,WANG Kunjie,ZHANG Xiaohu. Research progress on fiber reinforced silica aerogel composites[J]. New Chemical Materials,2017,45(3):19−21.
|
[11] |
ZHANG Z,FEI Z F,ZHAO S,et al. Enhanced CO2 adsorption property of amine in situ hybrid SiO2 aerogels by the incorporation of micropores[J]. Materials Letters,2023,337:133942. doi: 10.1016/j.matlet.2023.133942
|
[12] |
吴婷婷. 聚酰亚胺复合气凝胶的制备及性能研究[D]. 上海:东华大学,2022:4−6.
WU Tingting. Fabrication and properties of polyimide composite aerogels[D]. Shanghai:Donghua University,2022:4−6.
|
[13] |
MU Y Q,WANG T,ZHANG M,et al. CO2 high-temperature sorbent (Al,Fe,Ti) CO-doped Li4SiO4 from fly ash-derived SiO2 aerogel:in situ synthesis,enhanced capture ability and long cycle stability[J]. Fuel Processing Technology,2023,239:107533. doi: 10.1016/j.fuproc.2022.107533
|
[14] |
LINNEEN N N,PFEFFER R,LIN Y S. CO2 adsorption performance for amine grafted particulate silica aerogels[J]. Chemical Engineering Journal,2014,254:190−197. doi: 10.1016/j.cej.2014.05.087
|
[15] |
LEE H,OH J,KOO J Y,et al. Hierarchical metal-organic aerogel as a highly selective and sustainable CO2 adsorbent[J]. ACS Applied Materials & Interfaces,2022,14(41):46682−46694.
|
[16] |
霍晓文,于守武,肖淑娟,等. 金属有机框架材料在吸附分离领域的研究进展[J]. 材料工程,2021,49(7):10−20. doi: 10.11868/j.issn.1001-4381.2020.000559
HUO Xiaowen,YU Shouwu,XIAO Shujuan,et al. Research progress of metal-organic framework materials in adsorption separation[J]. Journal of Materials Engineering,2021,49(7):10−20. doi: 10.11868/j.issn.1001-4381.2020.000559
|
[17] |
BORRÁS A,ROSADO A,FRAILE J,et al. Meso/microporous MOF@graphene oxide composite aerogels prepared by generic supercritical CO2 technology[J]. Microporous and Mesoporous Materials,2022,335:111825. doi: 10.1016/j.micromeso.2022.111825
|
[18] |
SHALYGIN A S,NUZHDIN A L,BUKHTIYAROVA G A,et al. Preparation of HKUST-1@silica aerogel composite for continuous flow catalysis[J]. Journal of Sol-Gel Science and Technology,2017,84(3):446−452. doi: 10.1007/s10971-017-4455-3
|
[19] |
HUANG C,CAI B,ZHANG L H,et al. Preparation of iron-based metal-organic framework @cellulose aerogel by in situ growth method and its application to dye adsorption[J]. Journal of Solid State Chemistry,2021,297:122030. doi: 10.1016/j.jssc.2021.122030
|
[20] |
JIANG M,LI H Z,ZHOU L J,et al. Hierarchically porous graphene/ZIF-8 hybrid aerogel:preparation,CO2 uptake capacity,and mechanical property[J]. ACS Applied Materials & Interfaces,2018,10(1):827−834.
|
[21] |
LIU T,ZHANG X B,GU A P,et al. In-situ grown bilayer MOF from robust wood aerogel with aligned microchannel arrays toward selective extraction of uranium from seawater[J]. Chemical Engineering Journal,2022,433:134346. doi: 10.1016/j.cej.2021.134346
|
[22] |
YE X L,SUN H J,GAO S,et al. Kinetic model of organics degradation of reverse osmosis concentrate by UV/H2O2 processing[J]. IOP Conference Series:Earth and Environmental Science,2018,170:052044. doi: 10.1088/1755-1315/170/5/052044
|
[23] |
MOUSSOUT H,AHLAFI H,AAZZA M,et al. Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models[J]. Karbala International Journal of Modern Science,2018,4(2):244−254. doi: 10.1016/j.kijoms.2018.04.001
|
[24] |
QIN C,JIANG Y D,ZUO S Y,et al. Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2[J]. Energy,2021,236:121410. doi: 10.1016/j.energy.2021.121410
|
[25] |
王逸飞. 二氧化硅气凝胶负载过渡金属氧化物催化分解氧化亚氮的研究[D]. 北京:北京石油化工学院,2023:38−40.
WANG Yifei. Catalytic decomposition of nitrous oxide by transition metal oxides supported on silica aerogel[D]. Beijing:Beijing Institute of Petrochemical Technology,2023:38−40.
|
[26] |
杨宝拴. Cu-BTC及其改性前驱体衍生铜基氧化物催化剂低温NH3-SCR性能研究[D]. 太原:太原理工大学,2022:28−37.
YANG Baoshuan. Investigation on low-temperature NH3-SCR performance of copper-based oxide catalyst derived from Cu-BTC and its modified precursor[D]. Taiyuan:Taiyuan University of Technology,2022:28−37.
|
[27] |
ZHANG H,LIU J L,ZHU S Z. Preparation and characterization of alumina-coated hollow quartz fiber reinforced Al2O3-SiO2 aerogel composite[J]. Journal of Wuhan University of Technology (Materials Science) 2022,37(3):324−330. doi: 10.1007/s11595-022-2534-y
|
[28] |
何余生,李忠,奚红霞,等. 气固吸附等温线的研究进展[J]. 离子交换与吸附,2004,20(4):376−384. doi: 10.3321/j.issn:1001-5493.2004.04.012
HE Yusheng,LI Zhong,XI Hongxia,et al. Research progress of gas-solid adsorption isotherms[J]. Ion Exchange and Adsorption,2004,20(4):376−384. doi: 10.3321/j.issn:1001-5493.2004.04.012
|
[29] |
BUTTERSACK C. Modeling of type IV and V sigmoidal adsorption isotherms[J]. Physical Chemistry Chemical Physics,2019,21(10):5614−5626. doi: 10.1039/C8CP07751G
|
[30] |
杨晨,温月丽,王斌,等. 前驱体结构及Cu含量对CuFe基催化剂CO2加氢制C2+醇性能的影响[J]. 天然气化工—C1化学与化工,2022,47(4):32−40.
YANG Chen,WEN Yueli,WANG Bin,et al. Effect of precursor structure and Cu content on performance of CuFe-based catalysts for CO2 hydrogenation to C2+ alcohol[J]. Natural Gas Chemical Industry,2022,47(4):32−40.
|
[31] |
李叶,殷喜平,朱玉霞,等. 催化裂化催化剂比表面积的测定[J]. 石油学报(石油加工),2017,33(6):1053−1060. doi: 10.3969/j.issn.1001-8719.2017.06.003
LI Ye,YIN Xiping,ZHU Yuxia,et al. Test method for specific surface area of FCC catalyst[J]. Acta Petrolei Sinica (Petroleum Processing Section),2017,33(6):1053−1060. doi: 10.3969/j.issn.1001-8719.2017.06.003
|
[32] |
DOURBASH A,MOTAHARI S,OMRANPOUR H. Effect of water content on properties of one-step catalyzed silica aerogels via ambient pressure drying[J]. Journal of Non-Crystalline Solids,2014,405:135−140. doi: 10.1016/j.jnoncrysol.2014.09.013
|
[33] |
付菁菁,何春霞,陈永生,等. 纳米纤维素增强SiO2气凝胶力学性能与微观结构[J]. 复合材料学报,2018,35(9):2593−2599.
FU Jingjing,HE Chunxia,CHEN Yongsheng,et al. Mechanical properties and microstructure of SiO2 aerogel reinforced with cellulose nanofibrils[J]. Acta Materiae Compositae Sinica,2018,35(9):2593−2599.
|
[34] |
TODARO M,ALESSI A,SCIORTINO L,et al. Investigation by Raman spectroscopy of the decomposition process of HKUST-1 upon exposure to air[J]. Journal of Spectroscopy,2016,2016:8074297.
|
[35] |
王凤康. Cu-BTC为前驱体制备催化剂及其对甲苯的催化氧化研究[D]. 徐州:中国矿业大学,2019:18−34.
WANG Fengkang. Study on preparation of catalyst by Cu-BTC as precursorand and its catalytic oxidation of toluene[D]. Xuzhou:China University of Mining and Technology,2019:18−34.
|
[36] |
乔春珍,王宝利,肖云汉. 钙基CO2吸收剂循环活性衰减原因初探[J]. 化工学报,2010,61(3):720−724.
QIAO Chunzhen,WANG Baoli,XIAO Yunhan. Activity decline of Ca-based CO2 absorbent in repetitive calcination-carbonation[J]. CIESC Journal,2010,61(3):720−724.
|
[37] |
魏建文,和凯凯,孟令硕,等. TEPA/TETA改性SBA-15对CO2吸附性能的影响[J]. 环境工程学报,2015,9(9):4447−4452. doi: 10.12030/j.cjee.20150956
WEI Jianwen,HE Kaikai,MENG Lingshuo,et al. Effects of TEPA/TETA-modified SBA-15 on CO2 adsorption properties[J]. Chinese Journal of Environmental Engineering,2015,9(9):4447−4452. doi: 10.12030/j.cjee.20150956
|
[38] |
杨小强,丁玉栋,李晓强,等. 四乙烯五胺改性多孔二氧化硅制备及CO2吸附性能[J]. 化工进展,2020,39(9):3511−3517.
YANG Xiaoqiang,DING Yudong,LI Xiaoqiang,et al. Preparation of TEPA-functionalized porous silica nanoparticles and its CO2 adsorption ability[J]. Chemical Industry and Engineering Progress,2020,39(9):3511−3517.
|
[39] |
王晓光,刘岱,陈绍云,等. 五乙烯六胺改性金属有机骨架材料MIL-101(Cr)对CO2的吸附性能[J]. 燃料化学学报,2017,45(4):484−490.
WANG Xiaoguang,LIU Dai,CHEN Shaoyun,et al. Performance of pentaethylenehexamine modified MIL-101(Cr) metal-organic framework in CO2 adsorption[J]. Journal of Fuel Chemistry and Technology,2017,45(4):484−490.
|
[40] |
CUI S,YU S W,LIN B L,et al. Preparation of amine-modified SiO2 aerogel from rice husk ash for CO2 adsorption[J]. Journal of Porous Materials,2017,24(2):455−461. doi: 10.1007/s10934-016-0280-2
|
[41] |
ZHOU G,YANG S A,TIAN Y C,et al. Adsorption application of tetraethylenepentamine (TEPA) modified SBA-15@MIL-101(Cr) in carbon capture and storage (CCS)[J]. Microporous and Mesoporous Materials,2022,344:112232. doi: 10.1016/j.micromeso.2022.112232
|