Loading [MathJax]/jax/output/SVG/jax.js
Advance Search
NIU Hongbo,TIAN Shaoguo,ZU Pengju,et al. Effect of coal mining on net primary productivity of vegetation in Shendong Mining Area[J]. Coal Science and Technology,2024,52(7):267−277. DOI: 10.12438/cst.2023-1026
Citation: NIU Hongbo,TIAN Shaoguo,ZU Pengju,et al. Effect of coal mining on net primary productivity of vegetation in Shendong Mining Area[J]. Coal Science and Technology,2024,52(7):267−277. DOI: 10.12438/cst.2023-1026

Effect of coal mining on net primary productivity of vegetation in Shendong Mining Area

Funds: 

Research Project of Shaanxi Coal Chemical Industry Group (2022SMHKJ-B-J-54)

More Information
  • Received Date: July 12, 2023
  • Available Online: June 04, 2024
  • Coal mining in Shendong Mining area has an important impact on the local ecological environment, especially the growth of vegetation. In order to describe this effect quantitatively, this study uses a regional evapotranspiration model to calculate the Potential Net Primary Productivity (PNP,p) of the Shendong mining area. MODIS17A3 dataset (2001—2022) was used to characterize the Actual Net Primary Productivity (PNP,a), and combined with the monthly net primary productivity raster dataset of terrestrial ecosystems in China (PNP,al, 1988—2015), using GWR model construction correction method to correct PNP,al to obtain 1988—2000 PNP,a data, and using the difference between the two PNP,h to characterize the impact of coal mining. The effect of coal mining on vegetation PNP in Shendong mining area was evaluated. The results show that: ① the accuracy of PNP,al data corrected by GWR model is about 0.76, and the corrected PNP,al data has a strong spatial correlation with the MODIS17A3 dataset, which indicates the reliability of the accuracy of the corrected model; ② The overall PNP,a and PNP,h of Shendong mining area showed a trend of decreasing first and then recovering gradually, but the PNP of vegetation did not recover to the pre-mining level. The mean values of PNP,h before mining and PNP,h after mining are 21.50 g/m2 and −60.20 g/m2, respectively. PNP,h<0 indicates that PNP vegetation growth in mining areas is disturbed by mining activities, and the degraded mines are mainly distributed in high-intensity mining areas (calculated in C, the same below). ③ The change of PNP value in Shendong mining area from 1996 to 2022 is mainly influenced by climate change and human activities. The proportion of human activities and climate change to ecological degradation is 35.7% and 8.2%, respectively. The IRC from 1996 to 2015 is mainly about 0.5, indicating that coal mining plays a leading role in vegetation degradation. After 2016, the impact of photovoltaic power plant construction on PNP showed a promoting effect. This study is helpful to understand the impact of coal mining on the dynamic change of net primary productivity of vegetation, and provides scientific basis for vegetation restoration and high-quality development in Shendong mining area.

  • [1]
    FIELD C B,BEHRENFELD M J,RANDERSON J T,et al. Primary production of the biosphere:integrating terrestrial and oceanic components[J]. Science,1998,281:237−240. doi: 10.1126/science.281.5374.237
    [2]
    POTTER C S,RANDERSON J T,FIELD C B,et al. Terrestrial ecosystem production:a process model based on global satellite and surface data[J]. Global Biogeochemical Cycles,1993,7(4):811−841. doi: 10.1029/93GB02725
    [3]
    FIELD C B,RANDERSON J T,MALMSTRÖM C M. Global net primary production:Combining ecology and remote sensing[J]. Remote Sensing of Environment,1995,51(1):74−88. doi: 10.1016/0034-4257(94)00066-V
    [4]
    毕凡,潘竟虎. 2000年以来中国潜在植被净初级生产力的时空分布模拟[J]. 生态学报,2022,42(24):10288−10296.

    BI Fan,PAN Jinghu. Estimation of temporal and spatial distribution of potential vegetation net primary productivity in China since 2000[J]. Acta Ecologica Sinica,2022,42(24):10288−10296.
    [5]
    KLEMM T,BRISKE D D,REEVES M C. Potential natural vegetation and PNP responses to future climates in the U. S. Great Plains[J]. Ecosphere,2020,11(10):e03264.
    [6]
    唐正宇. 2000-2017年伊犁河流域植被PNP潜在变化及人类活动影响分析[D]. 兰州:兰州大学,2019.

    TANG Zhengyu. Analysis on potential change and impact of human activities in vegetation PNP in Ili River Basin from 2000 to 2017[D]. Lanzhou:Lanzhou University,2019.
    [7]
    GAO T,XU B,YANG X C,et al. Aboveground net primary productivity of vegetation along a climate-related gradient in a Eurasian temperate grassland:spatiotemporal patterns and their relationships with climate factors[J]. Environmental Earth Sciences,2017,76(1):56. doi: 10.1007/s12665-016-6158-4
    [8]
    刘英,朱蓉,岳辉. 典型露天矿区生态环境遥感评价[J]. 西安科技大学学报,2021,41(4):682−691.

    LIU Ying,ZHU Rong,YUE Hui. Remote sensing evaluation of ecological environment in typical open-pit mining areas[J]. Journal of Xi’an University of Science and Technology,2021,41(4):682−691.
    [9]
    谢少少,马超,田淑静,等. 2000—2010年神东矿区植被PNP的变化特征及影响因素分析[J]. 测绘科学技术学报,2015,32(1):47−51. doi: 10.3969/j.issn.1673-6338.2015.01.010

    XIE Shaoshao,MA Chao,TIAN Shujing,et al. PNP changes and climate impact of Shendong Coalfield from 2000 to 2010[J]. Journal of Geomatics Science and Technology,2015,32(1):47−51. doi: 10.3969/j.issn.1673-6338.2015.01.010
    [10]
    项阳,李君轶,陈宏飞. 基于CASA模型的神东矿区植被PNP变化研究[J]. 湖北农业科学,2017,56(10):1843−1846,1856.

    XIANG Yang,LI Junyi,CHEN Hongfei. Research on vegetation PNP changes by CASA model in Shendong mining area[J]. Hubei Agricultural Sciences,2017,56(10):1843−1846,1856.
    [11]
    苑森朋,张振师,党廷辉,等. 毛乌素沙地光伏电站3种植物措施生长发育状况及其生态功能比较[J]. 水土保持研究,2018,25(2):235−239.

    YUAN Senpeng,ZHANG Zhenshi,DANG Tinghui,et al. Comparative study of growth status of three plant measures and its ecological functions in photovoltaic power station of mu us sandy land[J]. Research of Soil and Water Conservation,2018,25(2):235−239.
    [12]
    王祯仪,汪季,高永,等. 光伏电站建设对沙区生态环境的影响[J]. 水土保持通报,2019,39(1):191−196.

    WANG Zhenyi,WANG Ji,GAO Yong,et al. Impacts of photovoltaic power station construction on ecology environment in sandy area[J]. Bulletin of Soil and Water Conservation,2019,39(1):191−196.
    [13]
    CHEN P F. Monthly PNP dataset covering China’s terrestrial ecosystems at north of 18°N (1985–2015)[J]. Journal of Global Change Data & Discovery,2019,3(1):34−41.
    [14]
    XU H J,WANG X P,ZHANG X X. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012[J]. Ecological Engineering,2016,92:251−259. doi: 10.1016/j.ecoleng.2016.04.005
    [15]
    ERB K H,KRAUSMANN F,GAUBE V,et al. Analyzing the global human appropriation of net primary production—processes,trajectories,implications. An introduction[J]. Ecological Economics,2009,69(2):250−259. doi: 10.1016/j.ecolecon.2009.07.001
    [16]
    张良侠,岳笑,周德成,等. 气候变化和人类活动对我国典型草原区植被恢复的影响[J]. 环境科学,2023,44(5):2694−2703.

    ZHANG Liangxia,YUE Xiao,ZHOU Decheng,et al. Impacts of climate change and human activities on vegetation restoration in typical grasslands of China[J]. Environmental Science,2023,44(5):2694−2703.
    [17]
    李枫,蒙吉军. 黑河中游净初级生产力的人类占用时空分异[J]. 干旱区研究,2018,35(3):743−752.

    LI Feng,MENG Jijun. Temporal and spatial variation of human appropriation of net primary productivity in the middle reaches of the Heihe River Basin[J]. Arid Zone Research,2018,35(3):743−752.
    [18]
    毛德华. 定量评价人类活动对东北地区沼泽湿地植被PNP的影响[D]. 哈尔滨:中国科学院研究生院(东北地理与农业生态研究所),2015.

    MAO Dehua. Quantitative assessment in the impacts of human activities on net primary productivity of wetlands in the Northeast China[D]. Harbin:Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,2015.
    [19]
    林沛圳. 光伏电站对生态环境的影响控制研究[J]. 中国资源综合利用,2022,40(7):146−148. doi: 10.3969/j.issn.1008-9500.2022.07.046

    LIN Peizhen. Research on the impact control of photovoltaic power stations on ecological environment[J]. China Resources Comprehensive Utilization,2022,40(7):146−148. doi: 10.3969/j.issn.1008-9500.2022.07.046
    [20]
    LI Y,KALNAY E,MOTESHARREI S,et al. Climate model shows large-scale wind and solar farms in the Sahara increase rain and vegetation[J]. Science,2018,361(6406):1019−1022. doi: 10.1126/science.aar5629
    [21]
    张文凯,肖武,吕雪娇,等. 2005—2015神东矿区不同开采强度下区域PNP时空变化分析[J]. 矿山测量,2019,47(5):1−6,19. doi: 10.3969/j.issn.1001-358X.2019.05.001

    ZHANG Wenkai,XIAO Wu,LYU Xuejiao,et al. Spatial and temporal change of regional PNP under different mining intensities in Shendong mining area from 2005 to 2015[J]. Mine Surveying,2019,47(5):1−6,19. doi: 10.3969/j.issn.1001-358X.2019.05.001
    [22]
    余学义,穆驰. 神东矿区土地复垦效益评价[J]. 西安科技大学学报,2019,39(2):201−208.

    YU Xueyi,MU Chi. Benefit evaluation of land reclamation in Shendong mining area[J]. Journal of Xi’an University of Science and Technology,2019,39(2):201−208.
    [23]
    刘芳. 准东煤炭开采区周边环境特征及社会经济发展评价[D]. 乌鲁木齐:新疆大学,2018.

    LIU Fang. Evaluation of environmental characteristics and socio-economic development around the coalfield of East Junggar Basin[D]. Urumqi:Xinjiang University,2018.
  • Related Articles

    [1]WANG Jiaqi, LU Mingyin, WANG Qingxiong, WANG Xufeng, LI Xiangong, ZHAI Wenrui. Study on ecological environment assessment of water conservation mining based on entropy weight method and cloud model[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(4): 291-298.
    [2]SU Wei, JIANG Chunlu, ZHA Junzhen, ZHENG Liugen, XIE Huadong, HUANG Wendi, CHEN Yuanping. Identification of mine water inrush source based on objective combinedweights-improved set pair analysis model[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(4): 156-164.
    [3]LI Jianlin, GAO Peiqiang, WANG Xinyi, ZHAO Shuaipeng. Prediction of mine water inflow based on Chaos-GeneralizedRegression Neural Network[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(4): 149-155.
    [4]LIU Peng WEI Huizi, JING Jiangbo, YANG Yanyan, . Predicting technology of gas emission quantity in coal mine based on enhanced CART regression algorithm[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (11).
    [5]DING Xiaohua, YUAN Wenjie, XIE Zhen, LI Aihe, QI Maofu, LIU Xiaoming, XIAO Shuangshuang. Classification and identification of rock blastability in open-pit mine based on comprehensive weighted cloud model[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (10).
    [6]ZHANG Jiawei, MA Jialiang, GAO Zheng, LIU Kuo, SHEN Weigang, SHEN Yang, XIAO Lin. Study on petrological characteristics and Paleo-geographic environment in Hujiahe Coal Mine of Binchang Coalfield[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (10).
    [7]HE Bao, LI Zhennan, ZHAO Shijie. Prediction on water inflow of surface mine based on multi-elementnonlinear regression analysis[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (5).
    [8]WEI Zhen SUN Hong-wei ZHU Qiao-yu LIU Yan-hua LU Li-jiang, . Analysis on complexity of fault structure based on regression model[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (3).
    [9]Study on Factors Affected to Air Content Ratio of Floatation Column and Regression Model[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (3).
    [10]Improved Shortest Path Algorithm Based on Mine Geographic Network Model[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (2).
  • Cited by

    Periodical cited type(11)

    1. 郭萌. “三高”环境下煤矿锚杆腐蚀机理研究与支护优化. 陕西煤炭. 2025(02): 153-157 .
    2. 巩师鑫. 深部复杂环境工作面液压支架压力-位姿融合分析技术. 工矿自动化. 2025(01): 71-77 .
    3. 王国法,张金虎,任怀伟,杜毅博,张德生,闫汝瑜,于翔. 煤炭高效开采数智技术与成套装备研究及应用. 煤炭学报. 2025(01): 43-64 .
    4. 庞义辉,毕经龙,袁鹏喆,赵宝福,丁自伟. 煤机装备全生命周期管理系统架构与关键技术. 煤炭科学技术. 2025(02): 339-350 . 本站查看
    5. 蒋力帅,杨一鸣,赵阳,李皓哲,吴琦,彭晓涵. 动载下含内部裂隙类岩体力学响应与能量耗散规律. 煤炭科学技术. 2025(02): 137-150 . 本站查看
    6. 亓玉浩. 智能化背景下大型煤炭企业管控模式创新变革的思考. 煤炭经济研究. 2024(04): 48-52 .
    7. 康宇博. S煤矿薄煤层智能化开采技术研究. 产业创新研究. 2024(14): 102-104 .
    8. 王旭东,闫祖喻,郭强,张锁,唐佳伟,胡瑜恬,刘小庆,李井峰. 地下水水化学垂向分带特征及成因机制——以新街矿区为例. 煤炭科学技术. 2024(08): 222-233 . 本站查看
    9. 庞义辉,关书方,姜志刚,白云,李鹏. 综放工作面围岩控制与智能化放煤技术现状及展望. 工矿自动化. 2024(09): 20-27 .
    10. 刘海明. 大采高综采工作面矿压规律研究. 中国煤炭. 2024(S1): 221-230 .
    11. 徐钦明,王杰春,王猛. 陷落柱预破碎爆破数值模拟研究. 煤矿爆破. 2024(04): 19-22 .

    Other cited types(14)

Catalog

    Article views (80) PDF downloads (26) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return