MA Lianjing,WANG Song,DU Song,et al. Depleted petroleum reservoirs reinjection and storage technical thinking of highly-mineralized mine water in Ningdong Coalfield[J]. Coal Science and Technology,2023,51(12):149−158
. DOI: 10.12438/cst.2023-1024Citation: |
MA Lianjing,WANG Song,DU Song,et al. Depleted petroleum reservoirs reinjection and storage technical thinking of highly-mineralized mine water in Ningdong Coalfield[J]. Coal Science and Technology,2023,51(12):149−158 . DOI: 10.12438/cst.2023-1024 |
The Ningdong Coalfield is located in the arid and semi-arid region of northwest China, which is one of the 14 approved large-scale coal bases with a reserve of over 100 million tons in China. Currently, it faces challenges such as a large volume of highly-mineralized mine water, mature but costly treatment technology, and a low comprehensive utilization rate. To achieve the low-cost efficient reinjection and storage of highly-mineralized mine water in the Ningdong Coalfield and to protect the hydrological and ecological environment, this study, based on the typical characteristics of high mineralization in the mine water of 13 coal mines in the Ningdong coalfield, proposes a technical approach for the reinjection and storage of highly-mineralized mine water in depleted petroleum reservoirs in the coal and oil resources overlapping area. This approach utilizes the valuable unconventional water resource by making use of the pore-fracture dual structure and water storage space in the depleted petroleum reservoirs, the initial reservoir pressure vacuum during the shutdown of the oilfield, and the low-cost disposal of highly-mineralized mine water after resource utilization. The study systematically elaborates on the selection of depleted petroleum reservoirs, reinjection processes, water storage potential, pre-treatment water quality requirements, and the feasibility analysis of the environment. It also outlines prospects for fundamental theoretical research, legal regulations, policies, and real-time monitoring and control. The results indicate the feasibility of the proposed reinjection and storage technology in depleted petroleum reservoirs, which can achieve the low-cost efficient treatment of highly-mineralized mine water in the Ningdong Coalfield. “How to finely characterize the water injection seepage process” is identified as a bottleneck issue in the reinjection treatment technology. In essence, it involves the evolution mechanism of water injection and seepage in the pore-fracture scale of the depleted petroleum reservoir under the coupled chemical action of highly-mineralized mine water and sandstone. Furthermore, there is an urgent need for improvement in related legal regulations, policies, and real-time monitoring and control to ensure the smooth implementation of the reinjection and storage technology in depleted petroleum reservoirs. This study aims to provide new insights into efficiently reinjecting and storing highly-mineralized mine water and to offer references for the protection of secondary water resources in the development of coal, oil, and gas resources.
[1] |
武 强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805.
WU Qiang. Progress,problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805.
|
[2] |
董书宁,姬亚东,王 皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报,2020,45(7):2367−2375.
DONG Shuning,JI Yadong,WANG Hao, et al. Prevention and control technology and application of roof water disaster in Jurassic coal field of Ordos Basin[J]. Journal of China Coal Society,2020,45(7):2367−2375.
|
[3] |
尹尚先,王玉国,李文生. 矿井水灾害:原因· 对策· 出路[J]. 煤田地质与勘探,2023,51(1):214−221.
YIN Shangxian,WANG Yuguo,LI Wensheng. Cause,countermeasures and solutions of water hazards in coal mines in China[J]. Coal Geology & Exploration,2023,51(1):214−221.
|
[4] |
曾一凡,刘晓秀,武 强,等. 双碳背景下“煤-水-热”正效协同共采理论与技术构想[J]. 煤炭学报,2023,48(2):538−550.
ZENG Yifan,LIU Xiaoxiu,WU Qiang,et al. Theory and technical conception of coal-water-thermal positive synergistic co-extraction under the dual carbon background[J]. Journal of China Coal Society,2023,48(2):538−550.
|
[5] |
刘 峰,曹文君,张建明,等. 我国煤炭工业科技创新进展及“十四五”发展方向[J]. 煤炭学报,2021,46(1):1−15.
LIU Feng,CAO Wenjun,ZHANG Jianming, et al. Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China Coal Society,2021,46(1):1−15.
|
[6] |
靳德武,王甜甜,赵宝峰,等. 宁东煤田东北部高矿化度地下水分布特征及形成机制[J]. 煤田地质与勘探,2022,50(7):118−127.
JIN Dewu,WANG Tiantian,ZHAO Baofeng, et al. Distribution characteristics and formation mechanism of high salinity groundwater in northeast Ningdong Coalfield[J]. Coal Geology & Exploration,2022,50(7):118−127.
|
[7] |
彭苏萍,毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报,2020,45(4):1211−1221.
PENG Suping,BI Yinli. Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River basin of China[J]. Journal of China Coal Society,2020,45(4):1211−1221.
|
[8] |
国家发展和改革委员会,国家能源局. 矿井水利用规划[R]. 北京:国家发展和改革委员会,2013.
|
[9] |
生态环境部,国家发展和改革委员会,国家能源局. 关于进一步加强煤炭资源开发环境影响评价管理的通知[EB/OL]. (2020-10-30) [2023-07-13]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202012/t20201202_811127.html.
|
[10] |
中共中央、国务院. 黄河流域生态保护和高质量发展规划纲要[EB/OL]. (2021-10-08)[2023-07-13]. https://www.gov.cn/zhengce/2021-10/08/content_5641438.htm.
|
[11] |
曾一凡,武 强,赵苏启,等. 我国煤矿水害事故特征、致因与防治对策[J]. 煤炭科学技术,2023,51(7):1−14. doi: 10.13199/j.cnki.cst.2023-0500
ZENG Yifan,WU Qiang,ZHAO Suqi, et al. Characteristics, causes, and prevention measures of coal mine water hazard accidents in China[J]. Coal Science and Technology,2023,51(7):1−14. doi: 10.13199/j.cnki.cst.2023-0500
|
[12] |
孙亚军,陈 歌,徐智敏,等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报,2020,45(1):304−316.
SUN Yajun,CHEN Ge,XU Zhimin, et al. Research progress of water environment,treatment and utilization in coal mining areas of China[J]. Journal of China Coal Society,2020,45(1):304−316.
|
[13] |
孙文洁,任顺利,武 强,等. 新常态下我国煤矿废弃矿井水污染防治与资源化综合利用[J]. 煤炭学报,2022,47(6):2161−2169.
SUN Wenjie,REN Shunli,WU Qiang, et al. Waterpollution’s prevention and comprehensive utilization of abandoned coal mines in China under the new normal life[J]. Journal of China Coal Society,2022,47(6):2161−2169.
|
[14] |
王 皓,董书宁,尚宏波,等. 国内外矿井水处理及资源化利用研究进展[J]. 煤田地质与勘探,2023,51(1):222−236.
WANG Hao,DONG Shuning,SHANG Hongbo, et al. Domestic and foreign progress of mine water treatment and resource utilization[J]. Coal Geology & Exploration,2023,51(1):222−236.
|
[15] |
顾大钊. 煤矿地下水库理论框架与技术体系[J]. 煤炭学报,2015,40(2):239−246.
GU Dazhao. Theory framework and technological system of coal mine underground reservoir[J]. Journal of China Coal Society,2015,40(2):239−246.
|
[16] |
顾大钊,张 勇,曹志国. 我国煤炭开采水资源保护利用技术研究进展[J]. 煤炭科学技术,2016,44(1):1−7.
GU Dazhao,ZHANG Yong,CAO Zhiguo. Technical progress of water resource protection and utilization by coal mining in China[J]. Coal Science and Technology,2016,44(1):1−7.
|
[17] |
顾大钊,李 庭,李井峰,等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术,2021,49(1):11−18.
GU Dazhao,LI Ting,LI Jingfeng, et al. Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology,2021,49(1):11−18.
|
[18] |
CHIM,LI Q,CAO Z, et al. Evaluation of water resources carrying capacity in ecologically fragile mining areas under the influence of underground reservoirs in coal mines[J]. Journal of Cleaner Production,2022,379:134449. doi: 10.1016/j.jclepro.2022.134449
|
[19] |
ZHANG C,WANG F ,BAI Q . Underground space utilization of coalmines in China:a review of underground water reservoir construction[J]. Tunnelling and Underground Space Technology,2021,107:103657.
|
[20] |
吴宝杨,李全生,曹志国,等. 煤矿地下水库高盐矿井水封存对地下水的影响[J]. 煤炭学报,2021,46(7):2360−2369.
WU Baoyang,LI Quansheng,CAO Zhiguo, et al. Influence of high salt mine water storaged in underground reservoir of coal mine on groundwater[J]. Journal of China Coal Society,2021,46(7):2360−2369.
|
[21] |
陈苏社,黄庆享,薛 刚,等. 大柳塔煤矿地下水库建设与水资源利用技术[J]. 煤炭科学技术,2016,44(8):21−28.
CHEN Sushe,HUANG Qingxiang,XUE Gang, et al. Technology of underground reservoir construction and water resource utilization in Daliuta Coal Mine[J]. Coal Science and Technology,2016,44(8):21−28.
|
[22] |
梁 冰,张 柴,刘 磊,等. 垃圾土现场渗透性测定与土水特性反演[J]. 岩土力学,2021,42(6):1493−1500,1511.
LIANG Bing,ZHANG Chai,LIU Lei, et al. Field permeability measurement of waste and inversion of soil-water characteristics[J]. Rock and Soil Mechanics,2021,42(6):1493−1500,1511.
|
[23] |
汪北方,武 力,张 晶,等. 煤矿地下水库煤岩变形特性的尺寸效应试验[J]. 采矿与安全工程学报,2021,38(4):810−818.
WANG Beifang,WU Li,ZHANG Jing, et al. Experiment on size effect of coal and rock deformation characteristics in coalmine underground reservoir[J]. Journal of Mining & Safety Engineering,2021,38(4):810−818.
|
[24] |
梁 冰,尉 达,汪北方,等. 煤矿地下水库岩石承载变形与时效特性实验研究[J]. 辽宁工程技术大学学报(自然科学版),2021,40(6):479−485.
LIANG Bing,YU Da,WANG Beifang, et al. Experimental study on rock bearing deformation and time-effect characteristics of underground reservoir in coal mine[J]. Journal of Liaoning Technical University (Natural Science),2021,40(6):479−485.
|
[25] |
刘 驰,刘晓丽,张 东,等. 软岩软化的水岩界面动力学模型及其演化规律[J]. 岩土工程学报,2022,44(12):2280−2289.
LIU Chi,LIU Xiaoli,ZHANG Dong, et al. Dynamic model for water-rock interface of softening of soft rock and its evolution law[J]. Chinese Journal of Geotechnical Engineering,2022,44(12):2280−2289.
|
[26] |
王恩志,张 东,刘晓丽,等. 裂隙岩体多结构多流态渗流模型与模拟[J]. 地球科学与环境学报,2022,44(6):894−902.
WANG Enzhi,ZHANG Dong,LIU Xiaoli, et al. Seepage model and simulation of multi-structure and multi-flow in fractured rock mass[J]. Journal of Earth Sciences and Environment,2022,44(6):894−902.
|
[27] |
智国军,鞠金峰,刘 润,等. 水岩相互作用对煤矿地下水库水质影响机理研究[J]. 采矿与安全工程学报,2022,39(4):779−785.
ZHI Guojun,JU Jinfeng,LIU Run, et al. Water-rock interaction and its influence on water quality in the underground reservoir[J]. Journal of Mining & Safety Engineering,2022,39(4):779−785.
|
[28] |
智国军,刘 润,杨瑞刚,等. 煤矿地下水库相邻采空区水力联系及渗流规律研究[J]. 矿业安全与环保,2022,49(2):9−15.
ZHI Guojun,LIU Run,YANG Ruigang, et al. Study on hydraulic connection and seepage law of adjacent goaf of underground reservoir in coal mine[J]. Mining Safety & Environmental Protection,2022,49(2):9−15.
|
[29] |
孙亚军,李 鑫,冯 琳,等. 鄂尔多斯盆地煤−水资源协调开采下矿区水资源异位回灌−存储技术思路[J]. 煤炭学报,2022,47(10):3547−3560.
SUN Yajun,LI Xin,FENG Lin, et al. Technical thinking on ectopic injection and storage of mine area water resources under the coordinated exploitation of coal and water background in Ordos Basin[J]. Journal of China Coal Society,2022,47(10):3547−3560.
|
[30] |
孙亚军,徐智敏,李 鑫,等. 我国煤矿矿井水污染问题及防控技术体系构建[J]. 煤田地质与勘探,2021,49(5):1−16.
SUN Yajun,XU Zhimin,LI Xin, et al. Mine water drainage pollution in China’s coal mining areas and the construction of prevention and control technical system[J]. Coal Geology & Exploration,2021,49(5):1−16.
|
[31] |
孙亚军,张 莉,徐智敏,等. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展[J]. 煤炭学报,2022,47(1):423−437.
SUN Yajun,ZHANG Li,XU Zhimin, et al. Multi-field action mechanism and research progress of coal minewater quality formation and evolution[J]. Journal of China Coal Society,2022,47(1):423−437.
|
[32] |
赵春虎,杨 建,王世东,等. 矿井水深层回灌过程量质耦合模拟分析[J]. 煤田地质与勘探,2021,49(5):36−44.
ZHAO Chunhu,YANG Jian,WANG Shidong, et al. Coupling simulation of groundwater dynamics and solute transfer in the process of deep reinjection of mine water[J]. Coal Geology & Exploration,2021,49(5):36−44.
|
[33] |
刘 琪,汪韦峻,罗 斌,等. 高盐矿井水深部转移存储介质特征与水动力演化规律[J]. 煤田地质与勘探,2021,49(5):29−35.
LIU Qi,WANG Weijun,LUO Bin, et al. Medium characteristics and hydrodynamic evolution law of high salinity mine water recharge in deep well[J]. Coal Geology & Exploration,2021,49(5):29−35.
|
[34] |
曾繁富,左明星,宋洪柱,等. 乌审旗一带刘家沟组作为高矿化度矿井水回灌目的层的可行性分析[J]. 煤炭与化工,2020,43(11):59−62,66.
ZENG Fanfu,ZUO Mingxing,SONG Hongzhu, et al. Feasibility analysis of the Liujiagou Group in the Wushen Banner area as a target layer for water recharge in highly mineralized mines[J]. Coal and Chemical Industry,2020,43(11):59−62,66.
|
[35] |
孙亚军,张梦飞,高 尚,等. 典型高强度开采矿区保水采煤关键技术与实践[J]. 煤炭学报,2017,42(1):56−65.
SUN Yajun ZHANG Mengfei GAO Shang, et al. Water-preserved mining technology and practice in typical high intensity mining area of China[J]. Journal of China Coal Society,2017,42(1):56−65.
|
[36] |
姚宏鑫,施立虎,杜金龙,等. 纳林河二号矿井高矿化度水深井回灌环境影响分析[J]. 内蒙古煤炭经济,2021(11):41−42.
YAO Hongxin,SHI Lihu,DU Jinlong, et al. Environmental impact analysis of deep well reinjection of high salinity water in Nalinhe No.2 mine[J]. Inner Mongolia Coal Economy,2021(11):41−42.
|
[37] |
陈 歌. 鄂尔多斯盆地东缘矿井水深部转移存储机理研究[D]. 徐州:中国矿业大学,2020.
CHEN Ge. Study on the deep transfer and storage mechanismof mine water in the Eastern Margin of Ordos Basin[D]. Xuzhou:China University of Mining and Technology,2020.
|
[38] |
CHEN G,XU Z,SUN Y, et al. Minewater deep transfer and storage[J]. Journal of Cleaner Production,2022,332:129848. doi: 10.1016/j.jclepro.2021.129848
|
[39] |
顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报,2021,46(10):3079−3089.
GU Dazhao,LI Jingfeng,CAO Zhiguo, et al. Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society,2021,46(10):3079−3089.
|
[40] |
李 鑫,孙亚军,陈 歌,等. 高矿化度矿井水深部转移存储介质条件及影响机制[J]. 煤田地质与勘探,2021,49(5):17−28.
LI Xin,SUN Yajun,CHEN Ge, et al. Medium conditons and influence mechanism of high salinity mine water transfer and storage by deep well recharge[J]. Coal Geology & Exploration,2021,49(5):17−28.
|
[41] |
葛光荣,吴一平,张 全. 高矿化度矿井水纳滤膜适度脱盐技术研究[J]. 煤炭科学技术,2021,49(3):208−214.
GE Guangrong,WU Yiping,ZHANG Quan. Research on technology and process for moderate desalination of high-salinity mine water by nanofiltration[J]. Coal Science and Technology,2021,49(3):208−214.
|
[42] |
靳德武,葛光荣,张 全,等. 高矿化度矿井水节能脱盐新技术[J]. 煤炭科学技术,2018,46(9):12−18.
JIN Dewu,GE Guangrong,ZHANG Quan, et al. New energy-saving desalination technology of highly-mineralized mine water[J]. Coal Science and Technology,2018,46(9):12−18.
|
[43] |
卞 伟,李井峰,顾大钊,等. 西部矿区高矿化度矿井水膜蒸馏处理技术[J]. 煤炭科学技术,2022,50 (3) :295−300.
BIAN Wei,LI Jingfeng,GU Dazhao,et al. Technology of membrane distillation treatment for highly-mineralized mine water in western mining area[J]. Coal Science and Technology,2022,50 (3) :295−300.
|
[44] |
李福勤,赵桂峰,朱云浩,等. 高矿化度矿井水零排放工艺研究[J]. 煤炭科学技术,2018,46(9):81−86.
LI Fuqin,ZHAO Guifeng,ZHU Yunhao, et al. Research on zero discharge process of highly-mineralized mine water[J]. Coal Science and Technology,2018,46(9):81−86.
|
[45] |
KARPENKO T,KOVALEV N,SHRAMENKO V, et al. Investigation of transport processes through ion–exchange membranes used in the production of amines from their salts using bipolar electrodialysis[J]. Membranes,2022,12(11):1126. doi: 10.3390/membranes12111126
|
[46] |
GONG Dian,YIN Yichen,CHEN Huiling, et al. Interfacial ions sieving for ultrafast and complete desalination through 2D Na nochannel defined graphene composite membranes[J]. ACS Nano,2021,15:9871−9881. doi: 10.1021/acsnano.1c00987
|
[47] |
LIU Yong,GAO Xin,WANG Ziping, et al. Controlled synthesis of bismuth oxychloride-carbon nanofiber hybrid materials as highly efficient electrodes for rocking-chair capacitive deionization[J]. Chemical Engineering Journal,2021,403:126326. doi: 10.1016/j.cej.2020.126326
|
[48] |
李 莉,李海霞,马 兰. 宁东煤田矿井水资源及其利用现状分析[J]. 干旱区资源与环境,2021,35(8):108−113.
LI Li,LI Haixia,MA Lan. The mine water resources and its utilization status in Ningdong coalfield[J]. Journal of Arid Land Resources and Environment,2021,35(8):108−113.
|
[49] |
杜 松,张 超,吴唯民,等. 深井灌注技术用于处理煤矿高盐废水的展望[J]. 中国给水排水,2020,36(16):40−48.
DU Song,ZHANG Chao,WU Weimin, et al. Prospect of deep well injection for treatment of coal mine Drainage Brine Wastewater[J]. China Water & Wastewater,2020,36(16):40−48.
|
[50] |
JAVADI A H,ENVELOPE M. Impact of salinity on fluid/fluid and rock/fluid interactions in enhanced oil recovery by hybrid low salinity water and surfactant flooding from fractured porous media[J]. Fuel,2022,329:125426. doi: 10.1016/j.fuel.2022.125426
|
[51] |
YANG K,GAO D. Numerical simulation of hydraulic fracturing process with consideration of fluid–solid interaction in shale rock[J]. Journal of Natural Gas Science and Engineering,2022,102:104580. doi: 10.1016/j.jngse.2022.104580
|
1. |
张天军,田嘉伟,张磊,庞明坤,潘红宇,孟伟,贺绥男. 循环载荷下破碎煤体渗透率及迂曲度演化研究. 岩土力学. 2025(05): 1409-1418+1428 .
![]() | |
2. |
王磊,钟浩,范浩,邹鹏,商瑞豪,晋康. 循环荷载下含瓦斯煤力学特性及应变场演化规律研究. 煤炭科学技术. 2024(06): 90-101 .
![]() |