SANG Shuxun,HUANG Fansheng,SHAN Yansheng,et al. Technology processes of enhancement of broken soft and low permeability coal reservoir and surface development of coalbed methane[J]. Coal Science and Technology,2024,52(1):196−210
. DOI: 10.12438/cst.2023-0997Citation: |
SANG Shuxun,HUANG Fansheng,SHAN Yansheng,et al. Technology processes of enhancement of broken soft and low permeability coal reservoir and surface development of coalbed methane[J]. Coal Science and Technology,2024,52(1):196−210 . DOI: 10.12438/cst.2023-0997 |
Broken soft and low permeability (BSLP) coal reservoirs are widely distributed in China. However, due to its soft and broken structure and low permeability, the conventional vertical/horizontal well direct fracturing technology is not ideal for the enhancement of BSLP coal seams and the surface development of coalbed methane (CBM). The efficient development of CBM in BSLP coal reservoirs has been an important technical bottleneck restricting the large-scale development of CBM industry and the efficient treatment of coal mine gas control in China. Based on the systematic analysis of the characteristics of BSLP coal reservoirs and the problems existing in the surface development of CBM, the current technological progress in the enhancement of BSLP coal reservoirs and surface development of CBM were reviewed by taking horizontal well as the base well type and focusing on three different technical directions: indirect fracturing, stress relief and consolidation before fracturing. The CBM development technologies of indirect fracturing, including roof indirect fracturing, gangue indirect fracturing and hard coal stratification indirect fracturing were summarized. The stress release CBM development technologies using different stress release methods, such as hydraulic jet cavitation, gas dynamic cavitation, mechanical + hydraulic + induced instability coupling cavitation and hydraulic slit, were reviewed. Furthermore, the CBM development technology of first consolidation and then fracturing of BSLP coal reservoirs induced by microorganisms was also summarized. The exploration of indirect fracturing technology has accumulated a lot of engineering practice, and has achieved a good effect on enhancing the BSLP coal reservoirs in areas with suitable geological conditions. The exploration of new technology for enhancing BSLP coal reservoir represented by stress release has also made great progress, and has entered the stage of engineering tests and verification. According to the characteristics of BSLP coal reservoir and the new development principle, the horizontal well stress release technology has greater potential for reservoir reconstruction and better effect for CBM development. Based on the horizontal well stress release method, the development trend of BSLP coal reservoir enhancement and surface CBM development technology was forecasted in three aspects: expanding the stress release range, improving the development effect of CBM and achieving the co-production of coal and CBM. It is expected to provide reference for improving the stimulation effect of BSLP coal reservoir and increasing the production of CBM well in China.
[1] |
张道勇,朱 杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604.
ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.
|
[2] |
侯泉林,李会军,范俊佳,等. 构造煤结构与煤层气赋存研究进展[J]. 中国科学:地球科学,2012,42(10):1487−1495.
HOU Quanlin,LI Huijun,FAN Junjia,et al. Structure and coalbed methane occurrence in tectonically deformed coals[J]. Science China:Earth Science,2012,42(10):1487−1495.
|
[3] |
姜在炳,李浩哲,方良才,等. 紧邻碎软煤层顶板水平井分段穿层压裂裂缝延展机理[J]. 煤炭学报,2020,45(S2):922−931.
JIANG Zaibing,LI Haozhe,FANG Liangcai,et al. Fracture propagation mechanism of staged through-layer fracturing for horizontal well in roof adjacent to broken-soft coal seams[J]. Journal of China Coal Society,2020,45(S2):922−931.
|
[4] |
桑树勋,周效志,刘世奇,等. 应力释放构造煤煤层气开发理论与关键技术研究进展[J]. 煤炭学报,2020,45(7):2531−2543.
SANG Shuxun,ZHOU Xiaozhi,LIU Shiqi,et al. Research advances in theory and technology of the stress release applied extraction of coalbed methane from tectonically deformed coals[J]. Journal of China Coal Society,2020,45(7):2531−2543.
|
[5] |
张 群,葛春贵,李 伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159.
ZHANG Qun,GE Chungui,LI Wei,et al. High efficiency extraction mode for fractured and low-permeability coal seam roof horizontal well segmented fracturing of coalbed methane[J]. Journal of China Coal Society,2018,43(1):150−159.
|
[6] |
巫修平,张 群. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及控制机制[J]. 天然气地球科学,2018,29(2):268−276.
WU Xiuping,ZHANG Qun. Research on controlling mechanism of fracture propagation of multi-stage hydraulic fracturing horizontal well in roof of broken soft and low permeability coal seam[J]. Natural Gas Geoscience,2018,29(2):268−276.
|
[7] |
黄中伟,李国富,杨睿月,等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报,2022,47(9):3212−3238.
HUANG Zhongwei,LI Guofu,YANG Ruiyue. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society,2022,47(9):3212−3238.
|
[8] |
张 群,降文萍,姜在炳,等. 我国煤矿区煤层气地面开发现状及技术研究进展[J]. 煤田地质与勘探,2023,51(1):139−158.
ZHANG Qun,JIANG Wenping,JIANG Zaibing,et al. The current situation and technological research progress of surface development of coalbed methane in coal mining areas in China[J]. Coalfield Geology and Exploration,2023,51(1):139−158.
|
[9] |
徐凤银,闫 霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14.
XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14.
|
[10] |
LU Y Y,ZHANG H D,ZHOU Z,et al. Current status and effective suggestions for efficient exploitation of coalbed methane in China:a review[J]. Energy & Fuels,2021,35(11):9102−9123.
|
[11] |
张遂安,刘欣佳,温庆志,等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1):105−118.
ZHANG Suian,LIU Xinjia,WEN Qingzhi,et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica,2021,42(1):105−118.
|
[12] |
李彬刚. 芦岭煤矿碎软低渗煤层高效抽采技术[J]. 煤田地质与勘探,2017,45(4):81−84,93.
LI Bingang. Efficient extraction technology for fragmented soft and low permeability coal seams in Luling Coal Mine[J]. Coalfield Geology and Exploration,2017,45(4):81−84,93.
|
[13] |
方良才,李贵红,李丹丹,等. 淮北芦岭煤矿煤层顶板水平井煤层气抽采效果分析[J]. 煤田地质与勘探,2020,48(6):155−160,169.
FANG Liangcai,LI Guihong,LI Dandan,et al. Analysis on the effect of coalbed methane extraction from horizontal wells on the roof of coal seams in Luling Coal Mine,Huaibei [J]. Coalfield Geology and Exploration,2020,48 (6):155−160,169.
|
[14] |
OLSEN T N,BRATTON T R,DONALD A,et al. Application of indirect fracturing for efficient stimulation of coalbed methane [C]//Rocky Mountain Oil & Gas Technology Symposium,April 16−18,2007,Denver,Colorado,USA.
|
[15] |
李雪娇,陈 帅,甄怀宾,等. 碎软煤层夹矸间接压裂开发煤层气技术研究[J]. 钻采工艺,2022,45(5):69−74.
LI Xuejiao,CHEN Shuai,ZHEN Huaibin,et al. Study on indirect fracturing technology for CBM development in the parting of broken soft coal seams[J]. Drilling and Production Technology,2022,45(5):69−74.
|
[16] |
许耀波,郭盛强. 软硬煤复合的煤层气水平井分段压裂技术及应用[J]. 煤炭学报,2019,44(4):1169−1177.
XU Yaobo,GUO Shengqiang. Technology and application of staged fracturing in coalbed methane horizontal well of soft and hard coal composite coal seam[J]. Journal of China Coal Society,2019,44(4):1169−1177.
|
[17] |
卢义玉,李 瑞,鲜学福,等. 地面定向井+水力割缝卸压方法高效开发深部煤层气探讨[J]. 煤炭学报,2021,46(3):876−884.
LU Yiyu,LI Rui,XIAN Xuefu,et al. Discussion on the efficient exploitation method of deep coalbed methane with pressure relief by ground direction well + hydraulic slotting[J]. Journal of China Coal Society,2021,46(3):876−884.
|
[18] |
杨睿月,黄中伟,李根生,等. 煤层气水平井水力喷射分段造穴技术探索[J]. 煤炭学报,2022,47(9):3284−3297.
YANG Ruiyue,HUANG Zhongwei,LI Gensheng,et al. Investigation of hydraulic jet multistage cavity completion in coalbed methane horizontal wells[J]. Journal of China Coal Society,2022,47(9):3284−3297.
|
[19] |
张 波,倪元勇,张丹琪,等. 煤层气水平井造穴及解堵造缝技术探索与实践[J]. 煤炭技术,2018,37(9):188−190.
ZHANG Bo,NI Yuanyong,ZHANG Danqi,et al. Exploration and practice on cave and seam-building technology of CBM horizontal wells[J]. Coal Technology,2018,37(9):188−190.
|
[20] |
SONG C,ELSWORTH D. Strengthening mylonitized soft-coal reservoirs by microbial mineralization[J]. International Journal of Coal Geology,2018,200:166−172. doi: 10.1016/j.coal.2018.11.006
|
[21] |
许耀波,朱玉双,张培河. 紧邻碎软煤层的顶板岩层水平井开发煤层气技术[J]. 天然气工业,2018,38(9):70−75.
XU Yaobo,ZHU Yushuang,ZHANG Peihe. Application of CBM horizontal well development technology in the roof strata close to broken-soft coal seams[J]. Natural Gas Industry,2018,38(9):70−75.
|
[22] |
刘世奇,高德燚,桑树勋,等. 不同粒度构造煤的视电阻率特征[J]. 煤炭科学技术,2022,50(12):162−169.
LIU Shiqi,GAO Deyi,SANG Shuxun,et al. Characteristics of apparent resistivity of coals with different particle sizes[J]. Coal Science and Technology,2022,50(12):162−169.
|
[23] |
LYU S,WANG S,CHEN X,et al. Natural fractures in soft coal seams and their effect on hydraulic fracture propagation:a field study[J]. Journal of Petroleum Science and Engineering,2020,192:107255. doi: 10.1016/j.petrol.2020.107255
|
[24] |
董 夔. 碎软煤储层区开发地质条件及其对煤层气井产能影响研究[D]. 北京:煤炭科学研究总院,2019.
DONG Kui. Study on geological conditions affected to production of coalbed methane well of broken soft coal reservoir [D]. Beijing:China Coal Research Institute,2019.
|
[25] |
王相龙,潘结南,王 凯,等. 微米CT扫描尺度下构造煤微裂隙结构特征及其对渗透性的控制[J]. 煤炭学报,2023,48(3):1325−1334.
WANG Xianglong, PAN Jienan, WANG Kai, et al. Structural characteristics of microfractures in tectonic coal at the scale of micron CT scan and their control of permeability[J]. Journal of China Coal Society,2023,48(3):1325−1334.
|
[26] |
FANG H,LI A,SANG S,et al. Numerical analysis of permeability rebound and recovery evolution with THM multi-physical field models during CBM extraction in crushed soft coal with low permeability and its indicative significance to CO2 geological sequestration[J]. Energy,2023,262:125395. doi: 10.1016/j.energy.2022.125395
|
[27] |
赵发军,陈学习,刘明举. 软煤和硬煤的甲烷吸附扩散特性对比[J]. 煤田地质与勘探,2016,44(4):59−63,68. doi: 10.3969/j.issn.1001-1986.2016.04.011
ZHAO Fajun,CHEN Xuexi,LIU Mingju,et al. Comparison of methane adsorption and diffusion characteristics in soft and hard coal[J]. Coal Geology and Exploration,2016,44(4):59−63,68. doi: 10.3969/j.issn.1001-1986.2016.04.011
|
[28] |
张宏杰,张 杰,杨 帅,等. 碎软煤层高螺旋复合排渣定向钻进技术试验研究[J]. 煤炭工程,2022,54(10):62−67.
ZHANG Hongjie,ZHANG Jie,YANG Shuai,et al. Experimental study on directional drilling technology of high spiral composite slag discharge in broken soft coal seam[J]. Coal Engineering,2022,54(10):62−67.
|
[29] |
王 力,姚宁平,姚亚峰,等. 煤矿井下碎软煤层顺层钻完孔技术研究进展[J]. 煤田地质与勘探,2021,49(1):285−296. doi: 10.3969/j.issn.1001-1986.2021.01.032
WANG Li,YAO Ningping,YAO Yafeng,et al. Research progress of drilling and borehole completion technologies in broken soft coal seam in underground coal mine[J]. Coal Geology & Exploration,2021,49(1):285−296. doi: 10.3969/j.issn.1001-1986.2021.01.032
|
[30] |
HE S,OU S,LU Y,et al. Failure mechanism of methane drainage borehole in soft coal seams:insights from simulation,theoretical analysis and in-borehole imaging[J]. Process Safety and Environmental Protection,2022,168:410−421. doi: 10.1016/j.psep.2022.10.012
|
[31] |
贾建称,陈 晨,董 夔,等. 碎软低渗煤层顶板水平井分段压裂高效抽采煤层气技术研究[J]. 天然气地球科学,2017,28(12):1873−1881.
JIA Jiancheng,CHEN Chen,DONG Kui,et al. Research on the technology of high efficient to drainage CBM by multistage fracturing in horizontal well along the roof of broken soft and low permeability coal seam[J]. Natural Gas Geoscience,2017,28(12):1873−1881.
|
[32] |
王战锋,许耀波. 构造煤储层煤粉产出机理及防治对策[J]. 中国煤层气,2013,10(5):20−22.
WANG Zhanfeng,XU Yaobo. Occurrence mechanism of coal dust in techtonically deformed coal reservoir and its control measures[J]. China Coalbed Methane,2013,10(5):20−22.
|
[33] |
李 瑞,王生维,陈立超,等. 煤层气排采中煤粉产出量动态变化及影响因素[J]. 煤炭科学技术,2014,42(6):122−125.
LI Rui,WANG Shengwei,CHEN Lichao,et al. Coal powder output dynamic variation and influence factors during coalbed methane drainage[J]. Coal Science and Technology,2014,42(6):122−125.
|
[34] |
曹代勇,袁 远,魏迎春,等. 煤粉的成因机制-产出位置综合分类研究[J]. 中国煤炭地质,2012,24(1):10−12.
CAO Daiyong,YUAN Yuan,WEI Yingchun,et al. Comprehensive classification study of coal fines genetic mechanism and origin site[J]. Coal Geology of China,2012,24(1):10−12.
|
[35] |
张晓玉,王安民,张傲翔,等. 韩城区块构造煤类型及其产出煤粉特征分析[J]. 中国煤炭地质,2014,26(8):91−94. doi: 10.3969/j.issn.1674-1803.2014.08.20
ZHANG Xiaoyu,WANG Anmin,ZHANG Aoxiang,et al. Tectonoclastic coal types and characteristic analysis of coal fines in Hancheng Block[J]. Coal Geology of China,2014,26(8):91−94. doi: 10.3969/j.issn.1674-1803.2014.08.20
|
[36] |
朱学申,吕玉民,郭广山,等. 基于煤体结构的煤层气井煤粉产出规律研究[J]. 中国煤层气,2016,13(5):35−38.
ZHU Xueshen,LYU Yumin,GUO Guangshan,et al. Study on the output law of coal fines produced by different coalbody structure coal from CBM wells[J]. China Coalbed Methane,2016,13(5):35−38.
|
[37] |
庞 涛,姜在炳,李浩哲,等. 碎软煤层顶板水平井空间位置对压裂裂缝扩展的影响[J]. 煤炭学报,2022,47(S1):196−203.
PANG Tao,JIANG Zaibing,LI Haozhe. Influence of the spatial position of horizontal well in roof strata of crushed soft coal seam on the propagation of fracturing fractures[J]. Journal of China Coal Society,2022,47(S1):196−203.
|
[38] |
李 浩,梁卫国,李国富,等. 碎软煤层韧性破坏-渗流耦合本构关系及其间接压裂工程验证[J]. 煤炭学报,2021,46(3):924−936.
LI Hao,LIANG Weiguo,LI Guofu,et al. Ductile failure-seepage coupling constitutive equations of broken soft coal and its verification in indirect fracturing engineering[J]. Journal of China Coal Society,2021,46(3):924−936.
|
[39] |
LI H,LIANG W,JIANG Y,et al. Numerical study on the field-scale criterion of hydraulic fracture crossing the interface between roof and broken low-permeability coal[J]. Rock Mechanics and Rock Engineering,2021,54(9):4543−4567. doi: 10.1007/s00603-021-02539-3
|
[40] |
LI H,LIANG W,WANG J,et al. Research on main controlling factors and its influencing laws on hydraulic fracture network in the fractured soft and low-permeability coal[J]. Journal of Natural Gas Science and Engineering,2021,95:104147. doi: 10.1016/j.jngse.2021.104147
|
[41] |
郭天魁,王云鹏,陈 铭,等. 煤层顶板水平井穿层压裂适应性数值模拟[J]. 天然气工业,2021,41(11):74−85. doi: 10.3787/j.issn.1000-0976.2021.11.008
GUO Tiankui,WANG Yunpeng,CHEN Ming,et al. Numerical simulation of adaptability of horizontal well layer-penetrating fracturing in the roof of coal seam[J]. Natural Gas Industry,2021,41(11):74−85. doi: 10.3787/j.issn.1000-0976.2021.11.008
|
[42] |
郭盛强,苏中良,何庆宏,等. 碎软煤层穿层压裂的层段优选方法研究[J]. 煤矿安全,2018,49(11):155−159,163.
GUO Shengqiang,SU Zhongliang,HE Qinghong,et al. Layer selection method for translayer fracturing of broken and soft coalbed[J]. Safety in Coal Mines,2018,49(11):155−159,163.
|
[43] |
周加佳. 碎软低渗煤层煤层气直井间接压裂技术及应用实践[J]. 煤田地质与勘探,2019,47(4):6−11. doi: 10.3969/j.issn.1001-1986.2019.04.002
ZHOU Jiajia. Technology and application of indirect fracturing in CBM vertical well of broken and soft coal seam with low permeability[J]. Coal Geology & Exploration,2019,47(4):6−11. doi: 10.3969/j.issn.1001-1986.2019.04.002
|
[44] |
姜在炳,李浩哲,许耀波,等. 煤层顶板分段压裂水平井地质适应性分析与施工参数优化[J]. 煤田地质与勘探,2022,50(3):183−192.
JIANG Zaibing,LI Haozhe,XU Yaobo. Geological adaptability analysis and operational parameter optimization for staged fracturing horizontal wells in coal seam roof[J]. Coal Geology & Exploration,2022,50(3):183−192.
|
[45] |
王 晶,段 静,李丹丹,等. 沁水盆地15号煤层顶板分段压裂水平井适应性及产气效果预测[J]. 中国煤炭地质,2022,34(6):16−20,28.
WANG Jing,DUAN Jing,LI Dandan,et al. Coal No. 15 roof staged fracturing horizontal well adaptability and gas production effect prediction in Qinshui Basin[J]. Coal Geology of China,2022,34(6):16−20,28.
|
[46] |
石应东,康天合,李立功. 含夹矸煤层水力裂缝在煤岩界面的扩展规律[J]. 煤矿安全,2018,49(12):173−176.
SHI Yingdong,KANG Tianhe,LI Ligong. Laws of hydrofracture expansion in coal and rock interface in coal seam containing gangue[J]. Safety in Coal Mines,2018,49(12):173−176.
|
[47] |
邓广哲,刘 华. 综采工作面砂岩夹矸层酸化压裂破碎机理[J]. 煤矿安全,2021,52(3):75−83.
DENG Guangzhe,LIU Hua. Fracture mechanism of acid fracturing of sandstones gangue layer in fully mechanized mining face[J]. Safety in Coal Mines,2021,52(3):75−83.
|
[48] |
高晓进,于海湧,黄志增,等. 架间定向水力压裂提高含夹矸巨厚煤层冒放性研究[J]. 煤炭科学技术,2017,45(3):56−61.
GAO Xiaojin,YU Haiyong,HUANG Zhizeng,et al. Research on directional hydraulic fracturing between powered support to improve top coal caving property in extreme thick seam with parting[J]. Coal Science and Technology,2017,45(3):56−61.
|
[49] |
伍永平,汤业鹏,解盘石,等. 含煤线夹矸岩体力学特性及变形破坏特征的数值实验[J]. 采矿与安全工程学报,2022,39(6):1198−1209.
WU Yongping,TANG Yepeng,XIE Panshi,et al. Numerical experimental study on mechanical properties and deformation and failure characteristics of the dirt band rock mass[J]. Journal of Mining & Safety Engineering,2022,39(6):1198−1209.
|
[50] |
LI X,ZHAO H,WANG C,et al. Study on horizontal well indirect fracturing technology in the gangue of broken soft coal seams for CBM development [C]//Middle East Oil,Gas and Geosciences Show held in Manama,Bahrain,2023.
|
[51] |
姚亚峰,张 杰,韩 健,等. 软硬复合煤层高效钻进装备研制及应用[J]. 煤炭科学技术,2018,46(4):76−81.
YAO Yafeng,ZHANG Jie,HAN Jian,et al. Development and application of high efficiency drilling equipment in hard-soft composite coal seam[J]. Coal Science and Technology,2018,46(4):76−81.
|
[52] |
刘洪永,李 振,杨建敏,等. 软硬复合煤层厚度比对卸荷破坏的控制作用[J]. 煤矿安全,2023,54(6):97−106. doi: 10.13347/j.cnki.mkaq.2023.06.015
LIU Hongyong,LI Zhen,YANG Jianmin,et al. Control effect of thickness ratio of soft and hard composite coal seam on unloading failure[J]. Safety in Coal Mines,2023,54(6):97−106. doi: 10.13347/j.cnki.mkaq.2023.06.015
|
[53] |
牟全斌. 我国煤层造穴增渗技术研究现状与进展[J]. 煤矿机械,2023,44(2):65−68.
MOU Quanbin. Research status and progress of cavitation permeability-increasing technology for coal seam in China[J]. Coal Mine Machinery,2023,44(2):65−68.
|
[54] |
梅永贵,周立春,余 巍,等. 造穴技术在华北油田煤层气开发中的发展与应用[J]. 中国煤层气,2016,13(2):16−18.
MENG Yonggui,ZHOU Lichun,YU Wei,et al. Development and application of cavitation technology for CBM development in Huabei oilfield[J]. China Coalbed Methane,2016,13(2):16−18.
|
[55] |
SANG S,XU H,FANG L,et al. Stress relief coalbed methane drainage by surface vertical wells in China[J]. International Journal of Coal Geology,2010,82(3/4):196−203. doi: 10.1016/j.coal.2009.10.016
|
[56] |
WANG Z,SANG S,ZHOU X,et al. Response in coal reservoirs and in-situ stress control during horizontal well coal cavern completion and stress release[J]. Gas Science and Engineering,2023,113:204950. doi: 10.1016/j.jgsce.2023.204950
|
[57] |
GAO D,SANG S,LIU S,et al. Experimental study on the deformation behaviour,energy evolution law and failure mechanism of tectonic coal subjected to cyclic loads[J]. International Journal of Mining Science and Technology,2022,32(6):1301−1313. doi: 10.1016/j.ijmst.2022.10.004
|
[58] |
赵 龙. 空气动力造穴技术适用性分析[J]. 中国煤炭地质,2016,28(8):30−32.
ZHAO Long. Aerodynamic caving technology applicability analysis[J]. Coal Geology of China,2016,28(8):30−32.
|
[59] |
杨睿月,陈健翔,黄中伟,等. 煤层气水平井扇形磨料射流造穴喷嘴结构设计[J]. 石油机械,2021,49(3):102−110.
YANG Ruiyue,CHEN Jianxiang,HUANG Zhongwei,et al. Structure design of abrasive-flat-jet nozzle for cavity completion of horizontal coalbed methane well[J]. China Petroleum Machinery,2021,49(3):102−110.
|
[60] |
李 瑞,卢义玉,葛兆龙,等. 地面井卸压的煤层气开发新模式[J]. 天然气工业,2022,42(7):75−84.
LI Rui,LU Yiyu,GE Zhaolong,et al. A new CBM development mode:Surface well pressure relief[J]. Natural Gas Industry,2022,42(7):75−84.
|
[61] |
周建斌. 割缝卸压致裂技术在碎软低渗煤层煤巷掘进中的应用[J]. 煤矿安全,2019,50(7):191−194.
ZHOU Jianbin. Application of slotted pressure relief cracking technology in coal roadway excavation of broken soft and low permeability coal seam[J]. Safety in Coal Mines,2019,50(7):191−194.
|
[62] |
王正帅. 碎软煤层顺层钻孔水力割缝增透技术研究[J]. 煤炭科学技术,2019,47(8):147−151.
WANG Zhengshuai. Research on hydraulic slitting anti-reflection technology for borehole drilled along broken soft coal seam[J]. Coal Science and Technology,2019,47(8):147−151.
|
[63] |
李 萌. 松软低透煤层超高压水力割缝技术应用及效果分析[J]. 煤炭技术,2021,40(11):90−93.
LI Meng. Application and effect analysis of ultra-high pressure hydraulic slitting technology in soft and low permeability coal seams[J]. Coal Technology,2021,40(11):90−93.
|
[64] |
刘见中,孙海涛,雷 毅,等. 煤矿区煤层气开发利用新技术现状及发展趋势[J]. 煤炭学报,2020,45(1):258−267.
LIU Jianzhong, SUN Haitao, LEI Yi, et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society,2020,45(1):258−267.
|
[65] |
刘 勇,魏建平,宋晨鹏,等. 一种石门揭煤过程中利用微生物固化煤层的装置及方法[P]. 中国:ZL112855073B,2022-09-20.
|
[66] |
沈昊洋. 基于微生物诱导碳酸钙沉淀技术的破碎煤体固化试验研究[D]. 徐州:中国矿业大学,2021.
SHEN Haoyang. Experimental study on solidification of broken coal based on microbial induced calcium carbonate precipitation technology [J]. Xuzhou: China University of Mining and Technology,2021.
|
[67] |
ZHANG K,TANG C,JIANG N,et al. Microbial-induced carbonate precipitation (MICP) technology:a review on the fundamentals and engineering applications[J]. Environmental Earth Sciences,2023,82(9):229. doi: 10.1007/s12665-023-10899-y
|
[68] |
梁仕华,牛九格,房采杏,等. 微生物固化砂土的研究进展[J]. 工业建筑,2018,48(7):1−9,15.
LIANG Shihua,NIU Jiuge,FANG Caixing,et al. Research progress of bio-cemented sand[J]. Industrial Construction,2018,48(7):1−9,15.
|
[69] |
黄中伟,李志军,李根生,等. 煤层气水平井定向喷射防砂压裂技术及应用[J]. 煤炭学报,2022,47(7):2687−2697.
HUANG Zhongwei,LI Zhijun,LI Gensheng,et al. Oriented and sand control hydra-jet fracturing in coalbed methane horizontal wells and field applications[J]. Journal of China Coal Society,2022,47(7):2687−2697.
|
[70] |
闫发志,朱传杰,郭 畅,等. 割缝与压裂协同增透技术参数数值模拟与试验[J]. 煤炭学报,2015,40(4):823−829.
RUN Fazhi,ZHU Chuanjie,GUO Chang,et al. Numerical simulation parameters and test of cutting and fracturing collaboration permeability-increasing technology[J]. Journal of China Coal Society,2015,40(4):823−829.
|
[71] |
HAO C,CHENG Y,WANG L,et al. A novel technology for enhancing coalbed methane extraction:hydraulic cavitating assisted fracturing[J]. Journal of Natural Gas Science and Engineering,2019,72:103040. doi: 10.1016/j.jngse.2019.103040
|
[72] |
YANG H,LI G,DONG X,et al. Application of coalbed methane hydraulic jet-increasing permeability-nitrogen injection to increase production in Shanxi mining area[J]. Journal of Petroleum Science and Engineering,2022,215:110611. doi: 10.1016/j.petrol.2022.110611
|
[73] |
鲍先凯,刘 源,郭军宇,等. 煤岩体在水中高压放电下致裂效果的定量评价[J]. 岩石力学与工程学报,2020,39(4):715−725.
BAO Xiankai,LIU Yuan,GUO Junyu,et al. Quantitative evaluation of fracturing effect of coal-rock masses under high-voltage discharge actions in water[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(4):715−725.
|
[74] |
刘清友,董 润,耿 凯,等. 井下机器人研究进展与应用展望[J]. 石油钻探技术,2019,47(3):50−55.
LIU Qingyou,HUANG Run,GENG Kai,et al. The status of current research on downhole robots and their multiple applications[J]. Petroleum Drilling Techniques,2019,47(3):50−55.
|
[75] |
LI G,SONG X,TIAN S,et al. Intelligent drilling and completion:A review[J]. Engineering,2022,18(11):33−48.
|
[76] |
王敏生,光新军. 智能钻井技术现状与发展方向[J]. 石油学报,2020,41(4):505−512.
WANG Minsheng,GUANG Xinjun. Status and development trends of intelligent drilling technology[J]. Acta Petrolei Sinica,2020,41(4):505−512.
|
[77] |
张世昆,陈 作. 人工智能在压裂技术中的应用现状及前景展望[J]. 石油钻探技术,2023,51(1):69−77.
ZHANG Shikun,CHEN Zuo. Status and prospect of artificial intelligence application in fracturing technology[J]. Petroleum Drilling Techniques,2023,51(1):69−77.
|