Advance Search
ZHAI Yingquan,SONG Dangyu,LI Yunbo. Experimental study of effect of temperature and pressure on the desorption rate of coal bed methane[J]. Coal Science and Technology,2024,52(S1):80−85. DOI: 10.12438/cst.2023-0958
Citation: ZHAI Yingquan,SONG Dangyu,LI Yunbo. Experimental study of effect of temperature and pressure on the desorption rate of coal bed methane[J]. Coal Science and Technology,2024,52(S1):80−85. DOI: 10.12438/cst.2023-0958

Experimental study of effect of temperature and pressure on the desorption rate of coal bed methane

Funds: 

National Natural Science Foundation of China (U2003104); National Natural Science Foundation of China (42002031; Shanxi Coalbed Methane Joint Fund Project (2016012001)

More Information
  • Received Date: June 28, 2023
  • Available Online: March 01, 2024
  • Desorption rates have an important influence on coal seam gas emergence patterns, the time to gas and the service life of coal bed methane wells. As the depth of the coal seam increases temperature and pressure have a significant control on methane adsorption, but relatively little attention has been paid to the effect of temperature and pressure on desorption rates. To investigate the effect of temperature and pressure on the desorption rate of coalbed methane, isothermal adsorption/desorption experiments were carried out with the same sample at different temperature and pressure conditions to obtain adsorption amount-time data at different equilibrium pressures. It is shown that the desorption rate at different pressures decreases exponentially with time. The desorption rate constant, the relative initial desorption rate and the median desorption time can reflect the change of desorption rate from different perspectives, where the desorption rate constant and the relative initial desorption rate increase with increasing temperature and pressure, and the median desorption time decreases with increasing temperature and pressure. Combined with the temperature/pressure gradient of the Baode Block in the Ordos Basin, it can be seen that the desorption rate is controlled by both temperature and pressure at shallower depths of 1000 m, and increases with depth; the pressure effect gradually decreases with depth between 1 000 and 1 735 m, while the temperature effect remains obvious.

  • [1]
    庚勐,陈浩,陈艳鹏,等. 第4轮全国煤层气资源评价方法及结果[J]. 煤炭科学技术,2018,46(6):64−68.

    GENG Meng,CHEN Hao,CHEN Yanpeng,et al. Methods and results of the fourth round national CBM resources evaluation[J]. Coal Science and Technology,2018,46(6):64−68.
    [2]
    DU Xidong,GU Min,HOU Zhenkun,et al. Experimental Study on the Kinetics of Adsorption of CO2 and CH4 in Gas-Bearing Shale Reservoirs[J]. Energy & Fuels,2019,33(12):12587−12600.
    [3]
    赵丽娟,秦勇,WANG Geoff,等. 高温高压条件下深部煤层气吸附行为[J]. 高校地质学报,2013,19(4):648−654. doi: 10.3969/j.issn.1006-7493.2013.04.011

    ZHAO Lijuan,QIN Yong,WANG Geoff,et al. Adsorption behavior of deep coalbed methane under high temperatures and pressures[J]. Geological Journal of China Universities,2013,19(4):648−654. doi: 10.3969/j.issn.1006-7493.2013.04.011
    [4]
    李松,汤达祯,许浩,等. 深部煤层气储层地质研究进展[J]. 地学前缘,2016,23(3):10−16.

    LI Song,TANG Dazhen,XU Hao,et al. Progress in geological researches on the deep coalbed methane reservoirs[J]. Earth Science Frontiers,2016,23(3):10−16.
    [5]
    陈刚,李五忠. 鄂尔多斯盆地深部煤层气吸附能力的影响因素及规律[J]. 天然气工业,2011,31(10):47−49.

    CHEN Gang,LI Wuzhong. Influencing factors and patterns of CBM adsorption capacity in the deep Ordos Basin[J]. Natural Gas Industry,2011,31(10):47−49.
    [6]
    韩思杰,桑树勋,周培明. 济阳坳陷深部煤层吸附效应及含气性特征[J]. 中国石油勘探,2017,22(5):33−42.

    HAN Sijie,SANG Shuxun,ZHOU Peiming. Adsorption effect and gas-bearing property of deep coal beds in Jiyang depression[J]. China Petroleum Exploration,2017,22(5):33−42.
    [7]
    WANG Fakai,LI Xuelong,CUI Bo,et al. Experimental study on adsorption promotion and desorption restrain of gas-containing coal in low-temperature environment[J]. Arabian Journal of Geosciences,2021,14:1−12. doi: 10.1007/s12517-020-06304-8
    [8]
    李相臣,康毅力,尹中山,等. 川南煤层甲烷解吸动力学影响因素实验研究[J]. 煤田地质与勘探,2013,41(4):31−34.

    LI Xiangchen,KANG Yili,YIN Zhongshan,et al. Experiment of affecting factors for methane desorption kinetics in south Sichuan coalfield[J]. Coal Geology & Exploration,2013,41(4):31−34.
    [9]
    王圣程,李海鉴. 不同温度压力下低渗煤体瓦斯的解吸规律[J]. 煤炭技术,2020,39(1):80−82.

    WANG Shengcheng,LI Haijian. Gas desorption law of low permeability coal at different temperatures and pressures[J]. Coal Technology,2020,39(1):80−82.
    [10]
    WANG Zhijun,ZHU Zhiguan. Experimental study on the effects of different heating rates on coalbed methane desorption and an analysis of desorption kinetics[J]. ACS Omega,2021,6(50):34889−34903. doi: 10.1021/acsomega.1c05562
    [11]
    左罗,胡志明,崔亚星,等. 页岩高温高压吸附动力学实验研究[J]. 煤炭学报,2016,41(8):2017−2023.

    ZUO Luo,HU Zhiming,CUI Yaxing,et al. High temperature and pressure methane adsorption characteristics and adsorption kinetics of shale[J]. Journal of China Coal Society,2016,41(8):2017−2023.
    [12]
    CHEN Lei,ZUO Luo,JIANG Zhenxue,et al. Mechanisms of shale gas adsorption:Evidence from thermodynamics and kinetics study of methane adsorption on shale[J]. Chemical Engineering Journal,2019,361:559−570. doi: 10.1016/j.cej.2018.11.185
    [13]
    张明杰,杨明鑫,贾天让,等. 龙山矿无烟煤超临界状态下吸附甲烷动力学特征[J]. 天然气地球科学,2022,33(2):267−276.

    ZHANG Mingjie,YANG Mingxin,JIA Tianrang,et al. Adsorption kinetic characteristics of anthracite in Longshan Mine[J]. Natural Gas Geoscience,2022,33(2):267−276.
    [14]
    WANG Kai,REN Haoyang,WANG Zhaofeng,et al. Temperature-pressure coupling effect on gas desorption characteristics in coal during low-variable temperature process[J]. Journal of Petroleum Science and Engineering,2022,211:110104. doi: 10.1016/j.petrol.2022.110104
    [15]
    王公达,REN Tingxiang ,齐庆新,等. 吸附解吸迟滞现象机理及其对深部煤层气开发的影响[J]. 煤炭学报,2016,41(1):49−56.

    WANG Gongda,REN Tingxiang,QI Qingxin,et al. Mechanism of adsorption-desorption hysteresis and its influence on deep CBM recovery[J]. Journal of China Coal Society,2016,41(1):49−56.
    [16]
    张遂安,叶建平,唐书恒,等. 煤对甲烷气体吸附—解吸机理的可逆性实验研究[J]. 天然气工业,2005,25(1):44−46.

    ZHANG Suian,YE Jianping,TANG Shuheng,et al. Theoretical analysis of coal-methane adsorption/desorption mechanism and its reversibility experimental study[J]. Natural Gas Industry,2005,25(1):44−46.
    [17]
    ZHAI Yingquan,LI Yunbo,SONG DangYu,et al. Gas diffusion characteristics and size effect in coal particles with different degrees of metamorphism[J]. Energy & Fuels,2023,37(3):2030−2039.
    [18]
    WANG Jianlong,GUO Xuan. Adsorption kinetic models:Physical meanings,applications,and solving methods[J]. Journal of Hazardous Materials,2020,390:122156. doi: 10.1016/j.jhazmat.2020.122156
    [19]
    BANGHAM D H,SEVER W X. An experimental investigation of the dynamical equation of the process of gas-sorption[J]. The London,Edinburgh and Dublin Philosophical Magazine and Journal of Science,1925,49(293):935−944. doi: 10.1080/14786442508634671
    [20]
    HO Y S,WASE D A J,FORSTER C F. Removal of lead ions from aqueous solution using sphagnum moss peat as adsorbent[J]. Water SA,1996,22(3):219−224.
    [21]
    ADEBISI G A,CHOWDHURY Z Z,ALABA P A. Equilibrium,kinetic,and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent[J]. Journal of Cleaner Production,2017,148:958−968. doi: 10.1016/j.jclepro.2017.02.047
    [22]
    LARGITTE L,PASQUIER R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon[J]. Chemical Engineering Research and Design,2016,109:495−504. doi: 10.1016/j.cherd.2016.02.006
    [23]
    曾泉树,汪志明. 鄂尔多斯盆地东缘煤岩渗透率的应力和温度敏感特征[J]. 石油科学通报,2020,5(4):512−519.

    ZHENG Quanshu,WANG Zhiming. Stress and temperature sensitivity of coal permeability in the Eastern Ordos Basin[J]. Petroleum Science Bulletin,2020,5(4):512−519.
    [24]
    ZHOU Xuan,YI Honghong,TANG Xiaolong,et al. Thermodynamics for the adsorption of SO2,NO and CO2 from flue gas on activated carbon fiber[J]. Chemical Engineering Journal,2012,200/201/202:399−404. doi: 10.1016/j.cej.2012.06.013
    [25]
    邵浩勇. 朱家店矿突出煤层甲烷吸附/解吸特性研究[D]. 太原:太原理工大学,2022:37−38.

    SHAO Haoyong. Study on the adsorption/desorption characteristics of methane in prominent coal seams in Zhujiadian Mine[D]. Taiyuan:Taiyuan University of Technology. 2022:37−38.
    [26]
    钟玲文,郑玉柱,员争荣,等. 煤在温度和压力综合影响下的吸附性能及气含量预测[J]. 煤炭学报,2002(6):581−585.

    ZHONG Lingwen,ZHENG Yuzhu,YUAN Zhengrong,et al. The adsorption capability of coal under integrated influence of temperature and pressure and predicted of content quantity of coal bed gas[J]. Journal of China Coal Society,2002(6):581−585.
  • Related Articles

    [1]ZHENG Chao, MA Dongmin, CHEN Yue, JI Yusong, MA Zhuoyuan, WANG Liya, WANG Xin. Research progress micro effect of water on coalbed methane adsorption/desorption[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(2): 256-268. DOI: 10.13199/j.cnki.cst.2022-1537
    [2]ZHAO Fangyu, DENG Ze, WANG Haichao, WANG Ze, SUN Pichen, YANG Shengbo. Influence of coal structure and macrolithotype of coal on coal adsorption and desorption of gas[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(12): 170-184. DOI: 10.13199/j.cnki.cst.2021-0365
    [3]LIU Jun, YANG Tong, WANG Liguo, CHEN Xiangjun. Study on elimination of water blocking effect in coal seam and its influence on methane desorption characteristics[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(9): 82-92.
    [4]TANG Mingyun, ZHANG Hailu, DUAN Sanzhuang, YAO Guanlin, ZHENG Chunshan, ZHANG Liangwei. Experimental study on effect of heat on methane adsorption and desorption in coal based on modified langmuir model[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(5): 182-189.
    [5]WANG Fenglin, YUAN Yu, ZHANG Suian, MA Dongmin, PENG Chuan, ZHAO Wei. Isothermal adsorption and desorption of coalbed methane underdifferent water saturation and negative pressure[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (6).
    [6]LIU Yinghong, LIU Jia, FENG Ruyong, LIAO Xia, LI Na. Method to calculate overall desorption appearance time in coalbed methane well[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (11).
    [7]Dang Guangxing Wu Caifang Wang Bo, . Quantitative analysis of methane adsorption/desorption hysteresis effect on coal sample[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (5).
    [8]Ma Dongmin Zhang Hui Wang Guirong Yang Jianqiang Bai Huaidong Suo Genxi Xu Jianmin, . Study on isobaric adsorption/desorption features of coalbed methane in Hujiahe Coal Field[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (4).
    [9]MA Dong-min CAO Shi-liu LI Ping ZHANG Hui WU Jie HAO Chun-sheng WANG Li, . Comparison on adsorption and desorption thermodynamics features between shale gas and coalbed methane[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (2).
    [10]Application of Adsorption Potential Theory to Study on Adsorption-Desorption of Coal Bed Methane[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (5).
  • Cited by

    Periodical cited type(6)

    1. 张嘉凡, 车虎斌, 张慧梅, 袁超, 刘小宇. 考虑裂隙贯穿度的岩石裂纹演化及声发射特性. 地下空间与工程学报. 2025(03)
    2. 王尚想,李宁. 基于PFC~(3D)模拟的卸荷岩柱破坏规律研究. 现代矿业. 2025(02): 52-56+61 .
    3. 张洁,冯国瑞,郭军,文晓泽,冯文明,张旭,张亮,DIAS Daniel. 法向扰动下裂隙砂岩的剪切力学性质与细观演化特征. 采矿与岩层控制工程学报. 2025(02): 182-197 .
    4. 胡善超,韩金明,程亚飞,亓佳利,黄俊鸿,高志豪,郭世豪,杨磊. 多孔套筒定向压裂力学机制及影响因素分析. 煤炭学报. 2024(08): 3366-3380 .
    5. 彭文彬,郭豪杰. 直剪加载下岩体能量演化及声发射特征数值模拟研究. 甘肃水利水电技术. 2024(10): 31-35 .
    6. 黄丹,许庆梅. 千枚岩力学特性与破坏特征研究. 石家庄铁道大学学报(自然科学版). 2024(04): 57-62 .

    Other cited types(8)

Catalog

    Article views (53) PDF downloads (35) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return