YANG Xiaoquan,LI Yuan,ZHENG Jieming,et al. Experimental study on electrochemical grouting of porous sandstone[J]. Coal Science and Technology,2023,51(S1):328−333
. DOI: 10.12438/cst.2023-0922Citation: |
YANG Xiaoquan,LI Yuan,ZHENG Jieming,et al. Experimental study on electrochemical grouting of porous sandstone[J]. Coal Science and Technology,2023,51(S1):328−333 . DOI: 10.12438/cst.2023-0922 |
In the southern part of Ordos Basin, the main coal seam is Jurassic Yan 'an Formation. Due to the large thickness of coal seam the water-conducting fracture zone of the coal seam leads to the pore-fissure aquifer of the Cretaceous Luohe Formation sandstone overlying the coal seam, resulting in a huge amount of water inflow in the mine, which seriously threatens the mine production. In order to effectively control roof water in thick sandstone layer, a series of roof grouting and water plugging engineering tests have been carried out in this area. However, since conventional cement grouting can only fill large cracks, electrochemical grouting tests have been developed to strengthen the sealing effect of micro-pore cracks in sandstone. Luohe Formation sandstone in Ningzheng Mining area is selected as the research object, and sandstone model materials are made by using river sand and cement according to the proportion of rock types in Luohe Formation. Two sets of electrochemical grouting tests are carried out in the sandstone model materials with calcium chloride and sodium silicate grout. The grout is injected at the cathode, and the voltage used for each grouting is 40 V, and the grout injection rate is maintained at a constant speed 10 mL/min, the test running time exceeded 2 h.The feasibility of electro-chemical grouting in fractured pore sandstone is verified. It is found that calcium chloride grout in solution is more suitable for electrochemical grouting of porous sandstone than collidal sodium silicate grout. The calcium ions in the solution of calcium chloride migrate under the action of electric field and have chemical reactions, forming colloid in the micropores of sandstone. Energy consumption per unit grouting volume of calcium chloride solution needed for 0.09 (kW·h)/L. Metal electrode loss is serious in the grouting process, and will cause Fe pollution to aquifer. In the future, it is necessary to carry out research on how to select environmentally friendly electrodes with low loss.
[1] |
董书宁,姬亚东,王 皓,等. 鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J]. 煤炭学报,2020,45(7):2367−2375.
DONG Shuning,JI Yadong,WANG Hao,et al. Prevention and control technology and application of roof water disaster in Jurassic coal field of Ordos Basin[J]. Journal of China Coal Society,2020,45(7):2367−2375.
|
[2] |
冯健, 张 彪, 师素珍, 等. 黄陇煤田厚层砂岩水害精准注浆防治水技术研究[J/OL]. [2022-11-04]. 煤炭科学技术: 1−10. DOI:10.13199/ j.cnki.cst. 2022-1393.
FENG Jian, ZHANG Biao, SHI Suzhen, et al. Research on water control technology of precise grouting in thick sandstone water damage in Huanglong coalfield[J/OL]. [2022-11-04]. Coal Science and Technology: 1−10. DOI:10.13199/ j.cnki.cst. 2022-1393.
|
[3] |
李超峰, 刘业献, 张金魁, 等. 基于双Packer抽水试验的洛河组水文地质特征垂向变异性研究 [J/OL]. [2023-04-20]. 煤田地质与勘探: 1−10. doi: 10.12363/issn.1001-1986.22.03.0168.
LI Chaofeng, LIU Yexian, ZHANG Jinkui, et al. Vertical variability of hydrogeological characteristics of Luohe Formation by double packer system pumping test[J/OL]. [2023-04-20]. Coal Geology & Exploration: 1−10. doi: 10.12363/issn.1001-1986.22.03.0168.
|
[4] |
李超峰. 黄陇煤田综放采煤顶板导水裂缝带高度发育特征[J]. 煤田地质与勘探,2019,47(2):129−136.
LI Chaofeng. Characteristics of height of water flowing fractured zone caused during fully-mechanized caving mining in Huanglong coalfield[J]. Coal Geology & Exploration,2019,47(2):129−136.
|
[5] |
张 彪,马 骥,黄辅强,等. 煤层顶板原生裂缝与采前注浆工艺技术对策[J]. 煤炭科技,2022,43(1):83−89.
ZHANG Biao,MA Ji,HUANG Fuqiang,et al. Primary fracture in coal roof and technical countermeasures of pre-mining grouting[J]. Coal Science & Technology Magazine,2022,43(1):83−89.
|
[6] |
蔺成森. 顶板巨厚砂岩水防治方法研究与应用[J]. 煤田地质与勘探,2019,47(S1):81−85. doi: 10.3969/j.issn.1001-1986.2019.S1.016
LIN Chengsen. Research and application of water control of thick sandstone in coal roof[J]. Coal Geology & Exploration,2019,47(S1):81−85. doi: 10.3969/j.issn.1001-1986.2019.S1.016
|
[7] |
靳德武,李超峰,刘英锋,等. 黄陇煤田煤层顶板水害特征及其防控技术[J]. 煤田地质与勘探,2023,51(1):205−213. doi: 10.12363/issn.1001-1986.22.10.0754
JIN Dewu,LI Chaofeng,LIU Yingfeng,et al. Characteristics of roof water hazard of coal seam in Huanglong Coalfield and key technologies for prevention and control[J]. Coal Geology & Exploration,2023,51(1):205−213. doi: 10.12363/issn.1001-1986.22.10.0754
|
[8] |
靳德武,刘英锋,王甜甜. 巨厚砂岩含水层下厚煤层综放减水开采技术[J]. 煤炭科学技术,2020,48(9):88−95. doi: 10.13199/j.cnki.cst.2020.09.010
JIN Dewu,LIU Yingfeng,WANG Tiantian. Water-reducing mining technology for fully-mechanized top-coal caving mining in thick coal seams under ultra-thick sandstone aquifer[J]. Coal Science and Technology,2020,48(9):88−95. doi: 10.13199/j.cnki.cst.2020.09.010
|
[9] |
张 彪. 彬长矿区巨厚顶板水减水思路与技术对策[J]. 煤炭科技,2022,43(4):146−151.
ZHANG Biao. Water reduction ideas and technical strategies of huge thick coal seam roof in Binchang Mining Area[J]. Coal Science & Technology Magazine,2022,43(4):146−151.
|
[10] |
李金龙,张允强,徐新启,等. 高家堡煤矿煤层顶板注浆加固堵水技术探讨[J]. 煤田地质与勘探,2019,47(S1):20−25. doi: 10.3969/j.issn.1001-1986.2019.S1.004
LI Jinlong,ZHANG Yunqiang,XU Xinqi,et al. Reinforcement and water plugging technology of roof grouting in Gaojiabao coal mine[J]. Coal Geology & Exploration,2019,47(S1):20−25. doi: 10.3969/j.issn.1001-1986.2019.S1.004
|
[11] |
钱自卫,曹丽文,姜振泉,等. 孔隙砂岩多次化学注浆试验研究[J]. 岩土力学,2014,35(8):2226−2230,2240.
QIAN Ziwei,CAO Liwen,JIANG Zhenquan,et al. Research on multiple chemical grouting experiment of porous sandstone[J]. Rock and Soil Mechanics,2014,35(8):2226−2230,2240.
|
[12] |
冯龙飞, 王双明, 王 海, 等. 彬长高家堡煤矿洛河组砂岩微观孔隙特征研究 [J/OL]. [2022-10-21]. 煤炭科学技术: 1−10. doi:10.13199/j.cnki.cst . 2022 -1016
FENG Longfei, WANG Shuangming, WANG Hai, Micro pore characteristics of Luohe aquifer sandstone in Binchang Gaojiabu coal mine [J/OL]. [2022-10-21]. Coal Science and Technology: 1−10. doi:10.13199/j.cnki.cst . 2022 -1016.
|
[13] |
沈 扬,邱晨辰,宋顺翔,等. 管状EKG电化学注浆软基加固室内试验研究[J]. 岩土工程学报,2017,39(S2):57−61.
SHEN Yang,QIU Chenchen,SONG Shunxiang,et al. Experimental study on electro-osmosis chemical grouting reinforcement of marine soft clay using tubular EKG[J]. Chinese Journal of Geotechnical Engineering,2017,39(S2):57−61.
|
[14] |
王宁伟,刘 铁,于 辉,等. 电化学注浆加固软土效果的试验研究[J]. 水利与建筑工程学报,2017,15(6):7−11. doi: 10.3969/j.issn.1672-1144.2017.06.002
WANG Ningwei,LIU Tie,YU Hui,et al. Experimental Study on the Effect of Electrochemical Grouting for Soft Soil[J]. Journal of Water Resources and Architectural Engineering,2017,15(6):7−11. doi: 10.3969/j.issn.1672-1144.2017.06.002
|
[15] |
张 雷,王宁伟,景立平,等. 电渗排水固结中电极材料的对比试验[J]. 岩土力学,2019,40(9):3493−3501, 3514.
ZHANG Lei,WANG Ning-wei,JING Li-ping,et al. Comparative experiments of different electrode materials on electro-osmotic consolidation[J]. Rock and Soil Mechanics,2019,40(9):3493−3501, 3514.
|
[16] |
甘淇匀. 软土电渗的电场作用机理与多场耦合理论研究 [D]. 杭州: 浙江大学, 2022.
GAN Qiyun, Studies on the electric field mechanism and multi-field coupling theory of electro-osmosis in soft soils[D]. Hanghzou: Zhejiang University, 2022.
|
[17] |
钱自卫. 孔隙砂岩化学注浆浆液渗透扩散机理 [D]. 徐州: 中国矿业大学, 2014.
QIAN Ziwei, Permaeation and diffusion mechanism of chemical grout in porous sandstone[D]. Xuzhou: China University of Mining and Technology, 2014.
|
[18] |
付英杰,王柳江,刘斯宏,等. CaCl2溶液起始注入时间对电化学加固效果影响试验[J]. 水利水电技术,2019,50(11):51−58.
FU Yingjie,WANG Liujiang,LIU Sihong,et al. Experiment on influence from initial injection time of CaCl2 solution on electrochemical reinforcement effect[J]. Water Resources and Hydropower Engineering,2019,50(11):51−58.
|
[19] |
王宁伟,柴高炯,刘 根,等. 氯化钙电化学加固软土的试验研究[J]. 工程勘察,2017,45(1):23−27.
WANG Ningwei,CHAI Gaojiong,LIU Gen,et al. Experimental study on electrochemical treatment for soft soil by calcium chloride[J]. Geotechnical Investigation & Surveying,2017,45(1):23−27.
|
[20] |
曾一凡,武 强,赵苏启,等. 我国煤矿水害事故特征、致因与防治对策[J]. 煤炭科学技术,2023,51(7):1−14.
ZENG Yifan,WU Qiang,ZHAO Suqi,et al. Characteristics, causes, and prevention measures of coal mine water hazard accidents in China[J]. Coal Science and Technology,2023,51(7):1−14.
|