LI Yong,CHEN Tao,MA Xiaotian,et al. Extension mechanism and influencing factors of indirect fracturing fractures on coal seam roof[J]. Coal Science and Technology,2024,52(2):171−182
. DOI: 10.12438/cst.2023-0910Citation: |
LI Yong,CHEN Tao,MA Xiaotian,et al. Extension mechanism and influencing factors of indirect fracturing fractures on coal seam roof[J]. Coal Science and Technology,2024,52(2):171−182 . DOI: 10.12438/cst.2023-0910 |
Fractured soft and low permeability coalbed is commonly developed in China, which restricts the increase of single well gas production and industrial development of coalbed methane (CBM). Indirect fracturing is a kind of fracturing method to communicate with coal seams by creating vertical fractures in the neighboring layers and thus achieve effective coal seam transformation, which can solve disadvantages such as drilling collapse, coal dust production, fracturing fluid filtration loss and thin coal seam thickness. In this paper, physical simulation experiments and extended finite element numerical simulation analysis of indirect fracturing are used to reveal the factors influencing the fracture expansion of indirect fracturing in the coal seam roof and to clarify the fracture expansion mechanism in order to provide guidance for indirect fracturing technology. The indirect fracturing experiments under the influence of direct fracturing of coal seam and different fracture initiation location, vertical stress and construction displacement show that high fracture initiation pressure is more likely to produce long fractures, and the influence of primary fractures is significantly reduced; however, the farther the fracture initiation point is from the coal seam, the more energy is required for fracture initiation, and high fracture pressure will cause crushing damage to the coal seam; under large construction displacement, the fracture initiation pressure is correspondingly increased, the fracture initiation time becomes shorter, and the influence of primary fractures becomes smaller. The degree of impact of primary fracture becomes smaller. Under the condition of model parameter setting in this paper, the numerical simulation results considering the parameters of ground stress, fracture initiation location, rock mechanics and construction displacement show that the maximum horizontal principal stress and vertical stress difference is <4 MPa, the effective stress difference between coal seam and roof is >3 MPa, and the combination of coal and roof elastic modulus difference <15 GPa is suitable for indirect fracturing. The optimal distance of the fracturing location from the coal seam is <6 m. The optimal range of the construction displacement should be determined according to the mechanical properties, fracture energy density and other parameters.
[1] |
秦 勇,申 建,李小刚. 中国煤层气资源控制程度及可靠性分析[J]. 天然气工业,2022,42(6):19−32. doi: 10.3787/j.issn.1000-0976.2022.06.002
QIN Yong,SHEN Jian,LI Xiaogang. Control degree and reliability of CBM resources in China[J]. Natural Gas Industry,2022,42(6):19−32. doi: 10.3787/j.issn.1000-0976.2022.06.002
|
[2] |
李 勇,徐立富,张守仁,等. 深煤层含气系统差异及开发对策[J]. 煤炭学报,2023,48(2):900−917.
LI Yong,XU Lifu,ZHANG Shouren,et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society,2023,48(2):900−917.
|
[3] |
李 勇,胡海涛,王延斌,等. 煤层气井低产原因及二次改造技术应用分析[J]. 矿业科学学报,2022,7(1):55−70.
LI Yong,HU Haitao,WANG Yanbin,et al. Analysis of low production coalbed methane wells and application of secondary reconstruction technologies [J]. Journal of Mining Science and Technology,2022,7(1):55−70.
|
[4] |
徐凤银,侯 伟,熊先钺等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发,2023,50(3):1−14
XU Fengyin,HOU Wei,XIONG Xianyue,et al. The status and development strategy of coalbed methane industry in China[J]. Petroleum Exploration and Development,2023,50(3):1−14.
|
[5] |
曹代勇,郭爱军,陈利敏,等. 煤田构造演化新解—从成煤盆地到赋煤构造单元[J]. 煤田地质与勘探,2016,44(1):1−8,16. doi: 10.3969/j.issn.1001-1986.2016.01.001
CAO Daiyong,GUO Aijun,CHEN Limin,et al. New Interpretation of coalfield tectonic evolution:from coal-forming basins to coal-bearing tectonic units[J]. Coal Geology & Exploration,2016,44(1):1−8,16. doi: 10.3969/j.issn.1001-1986.2016.01.001
|
[6] |
周加佳. 碎软低渗煤层煤层气直井间接压裂技术及应用实践[J]. 煤田地质与勘探,2019,47(4):6−11. doi: 10.3969/j.issn.1001-1986.2019.04.002
ZHOU Jiajia. Technology and application of indirect fracturing in CBM vertical well of broken and soft coal seam with low permeability[J]. Coal Geology & Exploration,2019,47(4):6−11. doi: 10.3969/j.issn.1001-1986.2019.04.002
|
[7] |
杨 宇,林 璠,曹 煜,等. 煤层气直井间接压裂施工的先导地质分析[J]. 煤田地质与勘探,2016,44(3):46−50. doi: 10.3969/j.issn.1001-1986.2016.03.009
YANG Yu,LIN Fan,CAO Yu,et al. Pilot geological analysis of indirect fracturing in vertical CBM well[J]. Coal Geology & Exploration,2016,44(3):46−50. doi: 10.3969/j.issn.1001-1986.2016.03.009
|
[8] |
ARNOLD III William T. Indirect hydraulic fracturing method for an unconsolidated subterranean zone and a method for restricting the production of finely divided particulates from the fractured unconsoli-dated zone:US,6644407B2[P]. 2003-05-21.
|
[9] |
OLSEN T N,BRATTON T R,DONALD A. Application of indirect fracturing for efficient stimulation of coalbed methane[J]. SPE Rocky Mountain Oil & Gas Technology Symposium,2007:16−18.
|
[10] |
曲靖宇. 临兴区煤层气间接压裂技术应用研究[D]. 北京:中国石油大学(北京),2019.
QU Jingyu. The application research of coalbed methane indirect fracturing technolgy in Linxing district[D]. Beijing: China University of Petroleum, 2019.
|
[11] |
边利恒,熊先钺,王炜彬. 低渗透软煤储层压裂改造研究[J]. 煤炭技术,2017,36(2):185−186.
BIAN Liheng,XIONG Xianyue,WANG Weibin. Research on stimulation of low permeability soft coal formation[J]. Coal Technology,2017,36(2):185−186.
|
[12] |
李雪娇,陈 帅,甄怀宾,等. 碎软煤层夹矸间接压裂开发煤层气技术研究[J]. 钻采工艺,2022,45(5):69−74.
LI Xuejiao,CHEN Shuai,ZHEN Huaibin,et al. Study on indirect fracturing technology for CBM development in the partingof broken soft coal seams[J]. Drilling and Production Technology,2022,45(5):69−74.
|
[13] |
张 群,葛春贵,李 伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):50−159
ZHANG Qun,GE Chungui,LI Wei,et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society,2018,43(1):50−159.
|
[14] |
熊先钺,边利恒,王 伟,等. 韩城区块煤储层间接压裂地质主控因素研究[J]. 煤炭科学技术,2017,45(6):189−195.
XIONG Xianyue,BIAN Liheng,WANG Wei,et al. Research on main geological controlling factors of coal reservoir indirect fracturing in Hancheng Block[J]. Coal Science and Technology,2017,45(6):189−195.
|
[15] |
杨秀春,徐凤银,王虹雅,等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探,2022,50(3):30−41. doi: 10.12363/issn.1001-1986.21.12.0823
YANG Xiuchun,XU Fengyin,WANG Hongya,et al. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment[J]. Coal Geology & Exploration,2022,50(3):30−41. doi: 10.12363/issn.1001-1986.21.12.0823
|
[16] |
龚迪光,曲占庆,李建雄,等. 基于ABAQUS平台的水力裂缝扩展有限元模拟研究[J]. 岩土力学,2016,37(5):1512−1520.
GONG Diguang,QU Zhanqing,LI Jianxiong,et al. Extended finite element simulation of hydraulic fracture based on ABAQUS platform[J]. Rock and Soil Mechanics,2016,37(5):1512−1520.
|
[17] |
张汝生,王 强,张祖国,等. 水力压裂裂缝三维扩展ABAQUS数值模拟研究[J]. 石油钻采工艺,2012,34(6):69−72. doi: 10.3969/j.issn.1000-7393.2012.06.020
ZHANG Rusheng,WANG Qiang,ZHANG Zuguo,et al. Research of ABAQUS numerical simulation of 3D fracture propagation in hydraulic fracturing process[J]. Oil Drilling & Production Technology,2012,34(6):69−72 doi: 10.3969/j.issn.1000-7393.2012.06.020
|
[18] |
连志龙,张 劲,王秀喜,等. 水力压裂扩展特性的数值模拟研究[J]. 岩土力学,2009,30(1):169−174. doi: 10.3969/j.issn.1000-7598.2009.01.029
LIAN Zhilong,ZHANG Jin,WANG Xiuxi,et al. Simulation study of characteristics of hydraulic fracturing propagation[J]. Rock and Soil Mechanics,2009,30(1):169−174. doi: 10.3969/j.issn.1000-7598.2009.01.029
|
[19] |
江丙云,孔祥宏,树 西,等. ABAQUS分析之美[M]. 北京:人民邮电出版社,2018.
|
[20] |
刘金龙. 基于ABAQUS平台的水力压裂裂缝扩展 [D]. 西安: 西安石油大学,2020.
LIU Jinlong. Simulation study on fracture propagation of hydraulic fracturing based on ABAQUS platform[D]. Xi’an:Xi’an Shiyou University,2020.
|
[1] | ZHANG Zhiyi, ZHAO Bo, GUAN Weiming, CHU Chunmei, QIAN Deyu. Numerical simulation of bearing capacity of aeolian sand-gabion[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(4): 220-232. DOI: 10.12438/cst.2024-0035 |
[2] | ZENG Qingliang, XU Penghui, MENG Zhaosheng, WAN Lirong. Dynamic response characteristics analysis of four column chock shield support under impact load[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 437-445. DOI: 10.13199/j.cnki.cst.2022-0975 |
[3] | LI Zhonghua, SONG Zhe. Dynamic response analysis of coal rock system based on time varying principle[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(9): 40-47. |
[4] | WU Bo, WEI Han, XU Shixiang, XU Jie, HUANG Zonghui. Numerical analysis of controlled blasting of elliptic bipolar linear shaped charge based on SPH[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(5). |
[5] | HAO Yong YU Hong-fei LIU Zheng ZHOU Yongliang MU Xian-min, . Mechanics Calculation and Analysis on Middle Pan of Scraper Conveyor[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (11). |
[6] | ZHANG Tie-yi ZHANG Hua-ming, . Analysis of Mining Dump Truck Rear Axle Housing Failure in Surface Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (4). |
[7] | WANG Lei FAN Shi-ping GONG Jjian-yu LI Jian-ping, . Finite Element Analysis of Antiknock Performance for KJYF- 96 /8 Refuge Chamber[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (3). |
[8] | Finite Element Analysis on Fatigue Crack Expansion of Lifter in Valve Seat of Emulsion Pump[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (5). |
[9] | Finite Element Analysis on Conical Pick and Holder During Non Relative Movement[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (1). |