Advance Search

LIU Qi,LIU Xianglin,CAO Guangyong,et al. Study on rotation angle and three-zone deformation characterization of hinged structure of mining overburden rock based on OFDR[J]. Coal Science and Technology,2024,52(3):63−73

. DOI: 10.12438/cst.2023-0893
Citation:

LIU Qi,LIU Xianglin,CAO Guangyong,et al. Study on rotation angle and three-zone deformation characterization of hinged structure of mining overburden rock based on OFDR[J]. Coal Science and Technology,2024,52(3):63−73

. DOI: 10.12438/cst.2023-0893

Study on rotation angle and three-zone deformation characterization of hinged structure of mining overburden rock based on OFDR

Funds: 

National Natural Science Foundation of China (51904168), Shandong Provincial Natural Science Foundation (ZR202212010234)

More Information
  • Received Date: August 02, 2023
  • Available Online: March 15, 2024
  • In order to study the fiber optical strain characterization method of the overlying rock structure during mining in a certain mine in northern Shannxi, based on the engineering geological conditions of 12217 working face in Buertai Mine, the strain monitoring principle of OFDR ( Optical Frequency Domain Reflection Technology ) was analyzed. Based on the partition of mining-induced overburden movement state and the principle of distributed optical fiber strain monitoring, a mechanical analysis model of horizontal optical fiber strain to characterize the rotation angle of mining-induced overburden hinged structure was established. The functional relationship between the peak width of strain and the rotation angle of mining-induced overburden hinged structure formed after rock strata were broken was deduced, and the concept of critical rotation angle of hinged structure was defined. Based on the strain characteristics of optical fiber and the rotation angle of hinged structure of mining overburden rock, the criterion of three-zone division of overburden rock is proposed, and the strain characteristics of mining overburden rock are analyzed by means of optical fiber strain characterization method. The results show that the different deformation degree of the three zones of mining overburden is proportional to the rotation angle of the hinged structure, so it is feasible to divide the three zones by the rotation angle of the hinged structure. The rotation angle of the hinged structure is calculated by the peak strain characteristics of the horizontal optical fiber. Compared with the close-range photogrammetry angle of the two-dimensional physical similarity model test, the average error between the two is less than 1°, which verifies the effectiveness of the mechanical model of the proposed optical fiber strain to characterize the rotation angle of the hinged structure of the mining overburden. The height of the caving zone and the height of the fracture zone obtained by the two-dimensional physical similarity model are consistent with the field results of the working face and the theoretical calculation values, which are in line with the actual situation of the mine. The research results provide a new research idea for the application of distributed optical fiber monitoring technology to characterize the deformation characteristics of mining overburden.

  • [1]
    陈荣华,白海波,冯梅梅. 综放面覆岩导水裂隙带高度的确定[J]. 采矿与安全工程学报,2006,23(2):220−223. doi: 10.3969/j.issn.1673-3363.2006.02.021

    CHEN Ronghua,BAI Haibo,FENG Meimei. Determination of height of water flowing fractured zone in overlying strata of fully mechanized caving face[J]. Journal of Mining and Safety Engi neering,2006,23(2):220−223. doi: 10.3969/j.issn.1673-3363.2006.02.021
    [2]
    杨伟强,郭文兵,赵高博,等. 理论判别方法及工程应用[J]. 煤炭科学技术,2022,50(10):42−50.

    YANG Weiqiang,CUO Wenbing,ZHA0 Caobo,et al. Theoretical judgement method of overburden “three-zonebased on rock strata deflection deformation and its engineering application[J]. Coal Science and Technology,2014,2022,50(10):42−50.
    [3]
    刘三钧,林柏泉,高 杰,等. 远距离下保护层开采上覆煤岩裂隙变形相似模拟[J]. 采矿与安全工程学报,2011,28(1):51−55. doi: 10.3969/j.issn.1673-3363.2011.01.010

    LIU Sanjun,LIN Baiquan,GAO Jie,et al. Similar simulation of overlying coal rock fracture deformation in long-distance lower protective layer mining[J]. Journal of Mining and Safety Engi neering,2011,28(1):51−55. doi: 10.3969/j.issn.1673-3363.2011.01.010
    [4]
    林海飞,李树刚,成连华,等. 覆岩采动裂隙带动态演化模型的实验分析[J]. 采矿与安全工程学报,2011,28(2):298−303. doi: 10.3969/j.issn.1673-3363.2011.02.025

    LIN Haifei,LI Shugang,CHENG Lianhua,et al. Experimental analysis of dynamic evolution model of mining-induced fracture zone in overlying strata[J]. Journal of Mining and Safety Engi neering,2011,28(2):298−303. doi: 10.3969/j.issn.1673-3363.2011.02.025
    [5]
    柴 敬,魏世明. 相似材料中光纤传感检测特性分析[J]. 中国矿业大学学报,2007,36(4):458−462. doi: 10.3321/j.issn:1000-1964.2007.04.008

    CHAI Jing,WEI Shiming. Analysis of optical fiber sensing detection characteristics in similar materials[J]. Journal of China University of Mining and Technology,2007,36(4):458−462. doi: 10.3321/j.issn:1000-1964.2007.04.008
    [6]
    ZHANG D,WANG J C,ZHANG P S,et al. Internal strain monitoring for coal mining similarity model based on distributed fiber optical sensing[J]. Measurement,2017,97:234−241. doi: 10.1016/j.measurement.2016.11.017
    [7]
    张 丹,施 斌,吴智深,等. BOTDR分布式光纤传感器及其在结构健康监测中的应用[J]. 土木工程学报,2003(11):83−87. doi: 10.3321/j.issn:1000-131X.2003.11.017

    ZHANG Dan,SHI Bin,WU Zhishen,et al. BOTDR distributed optical fiber sensor and its application in structural health monitoring[J]. China Civil Engineering Journal,2003(11):83−87. doi: 10.3321/j.issn:1000-131X.2003.11.017
    [8]
    李豪杰,朱鸿鹄,朱 宝,等. 基于光纤监测的埋地管线沉降模型试验研究[J]. 岩石力学与工程学报,2020,39(S2):3645−3654.

    LI Haojie,ZHU Honghu,ZHU Bao,et al. Model test study on settlement of buried pipeline based on optical fiber monitoring[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(S2):3645−3654.
    [9]
    王德洋,朱鸿鹄,吴海颖,等. 地层塌陷作用下埋地管道光纤监测试验研究[J]. 岩土工程学报,2020,42(6):1125−1131. doi: 10.11779/CJGE202006017

    WANG Deyang,ZHU Honghu,WU Haiying,et al. Experimental study on optical fiber monitoring of buried pipeline under the action of stratum collapse[J]. Chinese Journal of Geotechnical Engineering,2020,42(6):1125−1131. doi: 10.11779/CJGE202006017
    [10]
    张诚成,施 斌,朱鸿鹄,等. 地面沉降分布式光纤监测土–缆耦合性分析[J]. 岩土工程学报,2019,41(9):1670−1678.

    ZHANG Chengcheng,SHI Bin,ZHU Honghu,et al. Analysis of soil-cable coupling for distributed optical fiber monitoring of land subsidence[J]. Chinese Journal of Geotechnical Engineering,2019,41(9):1670−1678.
    [11]
    柴 敬,刘永亮,王梓旭,等. 保护层开采下伏煤岩卸压效应及其光纤监测[J]. 煤炭学报,2022,47(8):2896−2906.

    CHAI Jing,LIU Yongliang,WANG Zixu,et al. Pressure relief effect and optical fiber monitoring of underlying coal rock under protective layer mining[J]. Journal of China Coal Society,2022,47(8):2896−2906.
    [12]
    PIAO C D,LI J J,WANG D L,et al. A dofs-based approach to calculate the height of water-flowing fractured zone in overlying strata under mining[J]. Geofluids,2021:1−10.
    [13]
    HU T,HOU G Y,LI Z X. The field monitoring experiment of the roof strata movement in coal mining based on DFOS[J]. SENSORS,2020,20(5):1318−1349.
    [14]
    柴 敬,袁 强,王 帅,等. 长壁工作面覆岩采动“横三区”光纤光栅检测与表征[J]. 中国矿业大学学报,2015,44(6):971−976.

    CHAI Jing,YUAN Qiang,WANG Shuai,et al. detection and characterization of fiber grating in horizontal three area of overburden rock mining in longwall working Face[J]. Journal of China University of Mining and Technology,2015,44(6):971−976.
    [15]
    杜文刚,柴 敬,张丁丁,等. 采动覆岩导水裂隙发育光纤感测与表征模型试验研究[J]. 煤炭学报,2021,46(5):1565−1575.

    DU Wengang,CHAI Jing,ZHANG Dingding,et al. Experimental study on optical fiber sensing and characterization model of water-conducting fracture development in mining overburden rock[J]. Journal of China Coal Society,2021,46(5):1565−1575.
    [16]
    柴 敬,霍晓斌,钱云云,等. 采场覆岩变形和来压判别的分布式光纤监测模型试验[J]. 煤炭学报,2018,43(S1):36−43.

    CHAI Jing,HUO Xiaobin,QIAN Yunyun,et al. Distributed optical fiber monitoring model test for deformation and weighting discrimination of overlying strata in stope[J]. Journal of China Coal Society,2018,43(S1):36−43.
    [17]
    李 竹. 关键层结构回转速度力学模型及其应用研究[D]. 徐州:中国矿业大学,2018.

    LI Zhu. Rotary velocity mechanical model of key layer structure and its application research[D]. Xuzhou:China University of Mining & Technology,2018.
    [18]
    李 磊,侯 晨,朱万成,等. 基于OFDR技术的胶结充填体内部应变演化试验[J]. 东北大学学报(自然科学版),2023,44(2):258−264.

    LI Lei,HOU Chen,ZHU Wancheng,et al. Internal strain evolution test of cemented backfill based on OFDR technology[J]. Journal of Northeastern University (Natural Science Edition). 2023,44(2):258−264.
    [19]
    钱鸣高,许家林. 煤炭开采与岩层运动[J]. 煤炭学报,2019,44(4):973−984.

    QIAN Minggao,XU Jialin. Coal mining and strata movement[J]. Journal of China Coal Society,2019,44(4):973−984.
    [20]
    侯公羽,胡 涛,李子祥,等. 基于BOFDA的覆岩采动“两带”变形表征研究[J]. 采矿与安全工程学报,2020,37(2):224−237.

    HOU Gongyu,HU Tao,LI Zixiang,et al. Study on deformation characterization of two zones in overlying strata mining based on BOFDA[J]. Journal of Mining and Safety Engi neering,2020,37(2):224−237.
  • Cited by

    Periodical cited type(16)

    1. 安小磊,江柏,董传才,郭玉朋. 矿井智能通风传感器部署优化与应用研究. 中国设备工程. 2025(S1): 9-12 .
    2. 李继平. 矿井智能通风系统的设计与应用. 能源与节能. 2025(02): 100-102+106 .
    3. 李孜军,陈寅,王国强,徐宇,李守强,张云韦. 喀拉通克铜镍矿智能通风技术研究与应用. 矿冶. 2025(01): 19-25 .
    4. 秦波涛,马东. 采空区煤自燃与瓦斯复合灾害防控研究进展及挑战. 煤炭学报. 2025(01): 392-408 .
    5. 张浪,雷爽,李伟,刘彦青. 基于改进人工蜂群算法的矿井风量按需调控智能决策. 工矿自动化. 2025(03): 131-137 .
    6. 高科,戚志鹏,唐志强,石连增,袁可一,吕航宇. 矿井智能通风研究进展与前沿展望. 矿业安全与环保. 2025(02): 17-23 .
    7. 刘湘滢. 矿井智能通风研究进展及展望. 工矿自动化. 2025(04): 44-56 .
    8. 张官禹,马腾,王光明. 伊新煤业矿井通风阻力测定与分析. 山东煤炭科技. 2025(04): 56-60+70 .
    9. 李伟,刘彦青,张浪. 外因火灾通风网络风量风质失效模型与数值解算方法. 煤炭科学技术. 2025(05): 196-212 . 本站查看
    10. 贾瞳,马恒,高科. 引入风量波动因子动态解算矿井热流耦合通风网络. 煤炭学报. 2025(05): 2527-2539 .
    11. 吴奉亮,寇露. 用于矿井通风网络解算的通风机风压性能曲线自动识别方法. 工矿自动化. 2024(04): 103-111 .
    12. 陈炫中,王孝东,杨懿杰,吕玉琪,刘唱,杜青文,谢博. 矿井巷道风速智能感知技术研究进展. 矿产保护与利用. 2024(04): 124-134 .
    13. 秦桐,郭朝伟,邵昊,孙耀辉. 流场对采空区温度分布演化规律的影响研究. 煤矿安全. 2024(09): 110-117 .
    14. 臧燕杰,杨彦龙. 通风智能化技术在沙吉海煤矿的研究和应用. 内蒙古煤炭经济. 2024(17): 104-107 .
    15. 刘丹丹,沈琪翔,王威廉,郭胜均,汪春梅,贺平. 综掘工作面通风除尘系统结构优化及参数智能调控. 工矿自动化. 2024(10): 152-159 .
    16. 李全,宋宇航. 矿井智能通风实时监测与自动控制系统建设. 山东煤炭科技. 2024(11): 117-121+126 .

    Other cited types(8)

Catalog

    Article views (115) PDF downloads (62) Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return