Advance Search
QIAN Jing,YI Gaofeng,ZHOU Qizhong,et al. CO2 storage potential of coal seam in Sanhejian closed coal mine[J]. Coal Science and Technology,2024,52(3):258−268. DOI: 10.12438/cst.2023-0877
Citation: QIAN Jing,YI Gaofeng,ZHOU Qizhong,et al. CO2 storage potential of coal seam in Sanhejian closed coal mine[J]. Coal Science and Technology,2024,52(3):258−268. DOI: 10.12438/cst.2023-0877

CO2 storage potential of coal seam in Sanhejian closed coal mine

Funds: 

Mine-land Integration Funding Project (Jiangsu Provincial Finance and Resources and Environment [2021] No. 45)

More Information
  • Received Date: June 13, 2023
  • Available Online: March 18, 2024
  • Geological sequestration of CO2 in closed coal mines' coal seams is a significant method for CO2 sequestration and an effective strategy to achieve short-term carbon emission reduction goals. This study focuses on the Sanhejian coal mine in Xuzhou City, Jiangsu Province. The study scrutinizes the features of the coal rock and the quality of the mined No. 7 and No. 9 coal seams. Additionally, it calculates the remaining coal resource reserves. The study also applies the fuzzy comprehensive evaluation method to identify nine main influencing factors for the CO2 storage stability of the No. 7 and No. 9 coals. These factors include the stability factor, the nature of the overlying rock strata, the complexity of the geotectonic structure, the index of groundwater, the ratio of the sealed coal bed pressure to temperature, the ratio of the sealed coal bed depth to depth, the permeability of sealed coal beds, the degree of the hollowing-out collapse, and other relevant factors. We assessed the stability of CO2 storage in No. 7 and No. 9 coals based on key influencing elements. We developed a CO2 storage evaluation method to assess the CO2 storage capacity of coal seams in sealed coal mines. The findings indicate that the remaining reserves of No. 7 coal and No. 9 coal in the Sanhejian closed coal mine are substantial. The comprehensive evaluation results for CO2 storage stability are 86.209 and 87.698, respectively, indicating a higher level of stability and greater potential for storage. The CO2 storage capacity of the No. 7 and No. 9 coal seams in the closed coal mines of Sanhejian was determined using the established evaluation method. We calculated the theoretical storage capacity to be 207.6 Mt and 80.9 Mt, respectively. This led to the division of the storage area into three levels: favorable, more favorable, and unfavorable. The work can establish a fundamental foundation for investigating the storage of CO2 in coal seams within decommissioned coal mines.

  • [1]
    王双明,申艳军,孙 强,等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报,2022,47(1):45−60.

    WANG Shuangming,SHEN Yanjun,SUN Qiang,et al. Exploration on underground storage methods and technical problems of coal mining disturbance space CO2 under the goal of “dual carbon”[J]. Journal of China Coal Society,2022,47(1):45−60.
    [2]
    蔡博峰,李 琦,张 贤,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)中国CCUS路径研究[R]. 生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心,2021.

    CAI B,LI Qi,ZHANG Xian,et al. Research on CCUS path in China (2021) Annual Report on Carbon Dioxide Capture,Utilization and Storage (CCUS)[R]. Academy of Environmental Planning,Ministry of Ecology and Environment,Wuhan Institute of Geomechanics,Chinese Academy of Sciences,China Agenda 21 Management Center,2021.
    [3]
    GUNTER W D,GENTZIS T,ROTTENFUSSER B A,et al. Deep coalbed methane in Alberta,Canada:a fuel resource with the potential of zero greenhouse gas emissions[J]. Energy Conversion and Management,1997,38(S1):217−222.
    [4]
    梁卫国,吴 迪,赵阳升. CO2驱替煤层CH4试验研究[J]. 岩石力学与工程学报,2010,29(4):665−673.

    LIANG Weiguo,WU Di,ZHAO Yangsheng. Experimental study on CO2 displacement of CH4 in coal seam[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(4):665−673.
    [5]
    董华松,黄文辉. CO2捕捉与地质封存及泄漏监测技术现状与进展[J]. 资源与产业,2010,12(2):123−128.

    DONG Huasong,HUANG Wenhui. Current status and progress of CO2 capture,geological storage and leakage monitoring technology[J]. Resources and Industry,2010,12(2):123−128.
    [6]
    韩思杰. 深部无烟煤储层CO2-ECBM的CO2封存机制与存储潜力评价方法[D]. 徐州:中国矿业大学,2020.

    HAN Sijie. CO2 storage mechanism and storage potential evaluation method of CO2-ECBM in deep anthracite coal reservoir[D]. Xuzhou:China University of Mining and Technology,2020.
    [7]
    许延春,盖秋凯,黄 磊,等. 闭坑矿井积水对相邻生产矿井防治水的影响[J]. 煤炭科学技术,2020,48(9):96−101.

    XU Yanchun,GAI Qiukai,HUANG Lei,et al. Effect of water accumulation in closed pit mines on water prevention and control in adjacent production mines[J]. Coal Science and Technology,2020,48(9):96−101.
    [8]
    张周权,李剑锋. 三河尖煤矿高温热害治理技术[J]. 煤炭工程,2009(11):57−59.

    ZHANG Zhouquan,LI Jianfeng. High temperature heat damage control technology of Sanhejian coal mine[J]. Coal Engineering,2009(11):57−59.
    [9]
    黄福泉,孟建兵,朱 蒙,等. 射电定位法在煤矿老空水探测中的应用[J]. 地质学刊,2019,43(1):146−154.

    HUANG Fuquan,MENG Jianbing,ZHU Meng,et al. Application of radio positioning method in the detection of old air water in coal mine[J]. Journal of Geology,2019,43(1):146−154.
    [10]
    朱 伟. 徐州矿区深部地应力测量及分布规律研究[D]. 青岛:山东科技大学,2007.

    ZHU Wei. Study on deep in-situ stress measurement and distribution law in Xuzhou mining area[D]. Qingdao: Shandong University of Science and Technology,2007.
    [11]
    刘孝刚,张桂俊. 徐州三河尖煤矿充水因素分析及防治水对策[J]. 中国煤炭地质,2010,22(11):33−37.

    LIU Xiaogang,ZHANG Guijun. Analysis of water filling factors and water prevention and control countermeasures of Sanhejian Coal Mine in Xuzhou[J]. China Coal Geology,2010,22(11):33−37.
    [12]
    曹秀玲. 三河尖矿深井高温热害资源化利用技术[D]. 北京:中国矿业大学(北京),2010.

    CAO Xiuling. High temperature heat damage resource utilization technology of Sanhejian Mine[D]. Beijing: China University of Mining and Technology-Beijing,2010.
    [13]
    白宗荣. 三河尖煤矿本质安全的综合评价与管理研究[D]. 西安:西安建筑科技大学,2019.

    BAI Zongrong. Comprehensive evaluation and management research on intrinsic safety of Sanhejian coal mine[D]. Xi’an :Xi’an University of Architecture and Technology,2019.
    [14]
    王 壹,杨伟峰,张旭光,等. 深部非采煤层CO2封存稳定性模糊综合评判[J]. 岩石力学与工程学报,2021,31:2932−2939.

    WANG Yi,YANG Weifeng,ZHANG Xuguang,et al. Fuzzy comprehensive evaluation of CO2 storage stability in deep non-mining seam[J]. Chinese Journal of Rock Mechanics and Engineering,2021,31:2932−2939.
    [15]
    MASAJI F,SHINJI Y,MASAO N. CO2-ECBM field tests in the Ishikari Coal Basin of Japan[J]. International Journal of Coal Geology,2010,82(3/4):287−298.
    [16]
    SAIKAT M,KARL H W. Differential swelling and permeability change of coal in response to CO2 injection for ECBM[J]. International Journal of Coal Geology,2008,74(2):123−138. doi: 10.1016/j.coal.2007.11.001
    [17]
    PINI R,OTTIGER S,BURLINI L,et al. CO2 storage through ECBM recovery:an experimental and modeling study[J]. Energy Procedia,2009,1(1):1711−1717. doi: 10.1016/j.egypro.2009.01.224
    [18]
    ZARROUK S J,Moore T A. Preliminary reservoir model of enhanced coalbed methane (ECBM) in a subbituminous coal seam,Huntly Coalfield,New Zealand[J]. International Journal of Coal Geology,2009,77(1/2):153−161.
    [19]
    SINAYUÇ Ç,GÜMRAH F. Modeling of ECBM recovery from Amasra coalbed in Zonguldak Basin,Turkey[J]. International Journal of Coal Geology,2009,77(1/2):162−174.
    [20]
    LOIZZO M,BRESSERS P,BENEDICTUS T,et al. Assessing CO2 interaction with cement and steel over a two-year injection period:current state and future risks for the MovECBM proiect in Poland[J]. Energy Procedia,2009,1(1):3579−3586. doi: 10.1016/j.egypro.2009.02.152
    [21]
    WONG S,LAW D,DENG X H,et al. Enhanced coalbed methane and CO2 storage in anthracitic coals-Micro-pilot test at South Qinshui,Shanxi,China[J]. Greenhouse Gas Control,2007,1(2):215−222. doi: 10.1016/S1750-5836(06)00005-3
    [22]
    KIEKE D,IMBUS S,COHEN K,et al. The CO2 Capture Project Phase 2 (CCP2) Storage Program:progress in geological assurance in unmineable coal beds[J]. Energy Procedia,2009,1(1):79−86. doi: 10.1016/j.egypro.2009.01.013
    [23]
    任韶然,张 莉,张 亮. CO2地质埋存:国外示范工程及其对中国的启示[J]. 中国石油大学学报,2010,34(1):93−98.

    REN Shaoran,ZHANG Li,ZHANG Liang. Geological storage of CO2:foreign demonstration projects and their enlightenment to China[J]. Journal of China University of Petroleum,2010,34(1):93−98.
    [24]
    韩科明,李凤明. 采煤沉陷区稳定性模糊综合评判[J]. 煤炭学报,2009,34(12):1617−1619.

    HAN Keming,LI Fengming. Fuzzy comprehensive evaluation of stability in coal mining subsidence area[J]. Journal of China Coal Society,2009,34(12):1617−1619.
    [25]
    韩科明. 采煤沉陷区稳定性评价研究[D]. 北京:煤炭科学研究总院,2008.

    HAN Keming. Research on stability evaluation of coal mining subsidence area[D]. Beijing:General Academy of Coal Science,2008.
    [26]
    汪吉林,姜 波. 煤矿采空区稳定性的模糊综合评判[J]. 矿山压力与顶板管理,2005(2):29−31.

    WANG Jilin,JIANG Bo. Fuzzy comprehensive evaluation of stability of coal mine goaf[J]. Mine Pressure and Roof Management,2005(2):29−31.
    [27]
    李柏年. 模糊数学及其应用[M]. 合肥:合肥工业大学出版社,2007:4−13.

    LI Bainian. Fuzzy mathematics and its applications[M]. Hefei:Hefei University of Technology Press,2007:4−13.
    [28]
    李鸿吉. 模糊数学基础及实用算法[M]. 北京:科学出版社,2005:15−58.

    LI Hongji. Fuzzy mathematical foundation and practical algorithm[M]. Beijing:Science Press,2005:15−58.
    [29]
    孙叶谭,成 轩,杨贵生,等. 中国区域地壳稳定性定量化评价与分区[J]. 地质力学学报,1997,3(3):42−52.

    SUN Yetan,CHENG Xuan,YANG Guisheng,et al. Quantitative evaluation and zoning of regional crustal stability in China[J]. Journal of Geomechanics,1997,3(3):42−52.
    [30]
    郭建强,文冬光,张森琦,等. 中国二氧化碳地质储存潜力评价与示范工程[J]. 中国地质调查,2015,2(4):36−46.

    GUO Jianqiang,WEN Dongguang,ZHANG Senqi,et al. Evaluation and demonstration project of geological storage potential of carbon dioxide in China[J]. China Geological Survey,2015,2(4):36−46.
    [31]
    包一翔,李井峰,郭 强,等. 二氧化碳用于地质资源开发及同步封存技术综述[J]. 煤炭科学技术,2022,50(6):84−95.

    BAO Yixiang, LI Jingfeng, GUO Qiang,et al. Review on technologies of geological resources exploitation by using carbon dioxide and its synchronous storage[J]. Coal Science and Technology,2022,50(6):84−95.
    [32]
    何学秋,田向辉,宋大钊. 煤层CO2安全封存研究进展与展望[J]. 煤炭科学技术,2022,50(1):212−219.

    HE Xueqiu, TIAN Xianghui, SONG Dazhao. Progress and expectation of CO2sequestration safety in coal seams[J]. Coal Science and Technology,2022,50(1):212−219.
    [33]
    郭建强,张森琦,刁玉杰,等. 深部咸水层CO2地质储存工程场地选址技术方法[J]. 吉林大学学报(地球科学版),2011,41(4):1084−1091.

    GUO Jianqiang,ZHANG Senqi,DIAO Yujie,et al. Technical method of site selection for geological storage engineering CO2 deep saline aquifer[J]. Journal of Jilin University(Earth Science Edition),2011,41(4):1084−1091.
    [34]
    宋 革,朱炎铭,王 阳,等. 徐州地区深部不可采煤层CO2地质处置潜力分析[J]. 煤田地质与勘探,2014,42(4):11−15.

    SONG Ge,ZHU Yanming,WANG Yang,et al. Analysis of CO2 geological disposal potential of deep non-minable coal seam in Xuzhou Area[J]. Coal Geology & Exploration,2014,42( 4):11−15.
    [35]
    姚素平,汤中一,谭丽华,等. 江苏省CO2煤层地质封存条件与潜力评价[J]. 高校地质学报,2012,18(2):203−214.

    YAO Suping,TANG Zhongyi,TAN Lihua,et al. Evaluation of geological storage conditions and potential of CO2 coal seam in Jiangsu Province[J]. Geological Journal of China Universities,2012,18(2):203−214.
    [36]
    刘延锋,李小春,白 冰. 中国CO2煤层储存容量初步评价[J]. 岩石力学与工程学报,2005(16):2947−2952.

    LIU Yanfeng,LI Xiaochun,BAI Bing. Preliminary evaluation of CO2 coal seam storage capacity in China[J]. Chinese Journal of Rock Mechanics and Engineering,2005(16):2947−2952.
    [37]
    刁玉杰,朱国维,金晓琳,等. 四川盆地理论CO2地质利用与封存潜力评估[J]. 地质通报,2017,36(6):1088−1095.

    DIAO Yujie,ZHU Guowei,JIN Xiaolin,et al. Evaluation of theoretical CO2 geological utilization and storage potential in Sichuan Basin[J]. Geological Bulletin of China,2017,36(6):1088−1095.
    [38]
    刘 廷,马 鑫,刁玉杰,等. 国内外CO2地质封存潜力评价方法研究现状[J]. 中国地质调查,2021,8(4):101−108.

    LIU Ting,MA Xin,DIAO Yujie,et al. Research status of evaluation methods for CO2 geological storage potential at home and abroad[J]. China Geological Survey,2021,8(4):101−108.
  • Related Articles

    [1]HAO Chunming, WANG Yantang, YI Sihai, LIU Shuo. Evolution of microbial carbon sequestration potential in farmland soil driven by natural restoration in coal mine subsidence area[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(7): 305-317. DOI: 10.12438/cst.2024-0681
    [2]YANG Ke, WEI Jiale, FU Qiang, LV Xin. Potential of underground space energy storage and carbon reduction benefits of closed/abandoned mines in Anhui Province[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(4): 45-55. DOI: 10.12438/cst.2025-0171
    [3]DING Yang, TANG Yuanzhuo, LI Shugang, ZHAO Hongchao, ZHU Bing, ZHANG Yizheng, ZHANG Yan. Numerical simulation of well location deployment scheme for CO2 sequestration in old goaf[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S2): 131-141. DOI: 10.12438/cst.2023-1303
    [4]LIU Lang, FANG Zhiyu, WANG Shuangming, GAO Guobin, ZHANG Bo, ZHAO Yujiao, ZHU Mengbo, LIU Zhichao, WANG Jingyu, ZHOU Jing, LI Yan, WANG Mei, ZHANG Xiaoyan, ZHOU Song, JIA Qifeng. Theoretical basis and technical conception of backfill carbon fixation in coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(2): 292-308. DOI: 10.12438/cst.2023-1485
    [5]CHEN Fu, SONG Xiaojun, DONG Wenxue, ZHU Yanfeng, YOU Yunnan, MA Jing. Effects of land reclamation on soil bacterial community assembly and carbon sequestration function in coal mine subsidence area: taking Dongtan Mining Area as an example[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(1): 345-354. DOI: 10.12438/cst.2023-1221
    [6]ZHANG Junjian, CHANG Xiangchun, LYU Dawei, WANG Dongdong, DAI Xuguang, ZHANG Xiaoyang, JI Yukun, LI Menghang, LIU Haiyan, ZHENG Xue. Carbon dioxide geological storage system in coal seam development area under the premise of double carbon target[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S1): 206-214. DOI: 10.13199/j.cnki.cst.2022-0538
    [7]GAO Fei, WANG Peng, SHAN Yafei. Study on the factors affecting the adsorption of CO2 from power plant flus gas in coal left in goaf area[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(9): 140-148. DOI: 10.13199/j.cnki.cst.2022-1037
    [8]CHEN Fu, ZHU Yanfeng, MA Jing, DONG Wenxue, YOU Yunnan, YANG Yongjun. Mechanism, potential and regulation of carbon sequestration and sink enhancement in ecological restoration of mining areas in the Loess Plateau[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 502-513. DOI: 10.13199/j.cnki.cst.2023-2250
    [9]QIN Botao, JIANG Wenjie, SHI Quanlin, XU Yizhen, SHAO Xu. Research progress on fly ash foundation technology to prevent and control spontaneous combustion of coal in mines[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 329-342. DOI: 10.13199/j.cnki.cst.2022-2117
    [10]HE Xueqiu, TIAN Xianghui, SONG Dazhao. Progress and expectation of CO2 sequestration safety in coal seams[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(1): 212-219.
  • Cited by

    Periodical cited type(2)

    1. 张纯旺,金智新,冯国瑞,高瑞,李春. 废弃矿井采空区覆岩裂隙网络水气两相渗流特性研究. 中国矿业. 2024(08): 37-45 .
    2. 刘正茂,李虎,朱先博,李忠华,朱阳涛,李彪. 厚煤层综采工作面覆岩运动规律研究. 当代化工研究. 2024(24): 57-59 .

    Other cited types(5)

Catalog

    Article views (132) PDF downloads (40) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return