Advance Search

PAN Jingtao,LIU Changyu,ZHAO Dan,et al. Downward directional drilling nitrogen foam power-law multiphase flow slag unblocking technology[J]. Coal Science and Technology,2023,51(12):298−309

. DOI: 10.12438/cst.2023-0862
Citation:

PAN Jingtao,LIU Changyu,ZHAO Dan,et al. Downward directional drilling nitrogen foam power-law multiphase flow slag unblocking technology[J]. Coal Science and Technology,2023,51(12):298−309

. DOI: 10.12438/cst.2023-0862

Downward directional drilling nitrogen foam power-law multiphase flow slag unblocking technology

Funds: 

National Natural Science Foundation of China(52174183)

More Information
  • Received Date: June 10, 2023
  • Available Online: November 14, 2023
  • In order to solve the technical bottleneck problem of downward directional drilling coal cuttings blockage and gas drainage with concentration but no flow, the nitrogen foam power law multiphase flow slag carrying and unblocking technology of downward directional drilling was proposed. Theoretical analysis, numerical simulation, om-site industrial experiments and other methods were used to research the causes of coal cuttings blockage caused by downward directional drilling gas drainage in coal mines, and the theory and practical application of nitrogen foam power law multiphase flow slag carrying in downward directional drilling annular. Numerical simulation was carried out by a turbulence model containing wall function coupled with gas flow and coal deformation, and the elastic displacement of the borehole wall caused by the fluid pressure after drilling extraction was analyzed. Numerical simulation with a three-dimensional Coulomb failure criterion model solved for the pressure changes caused by extraction, as well as the stress, strain, and displacement changes induced by the pressure changes, and the collapsing risk of downward directional drilling. The stability of nitrogen foam, the fluidity of foam in drill pipe, at the drill bit, in the annulus, the suspension performance of coal powder in foam, the pressure loss of foam slagging in the annulus, and the upward slagging stress on the foam were analyzed by the power law multiphase flow theory. Based on the theoretical analysis of downward directional drilling annulus nitrogen foam power law multiphase flow slag carrying theory, the stable nitrogen foam generator, foam generating injecting system, downward directional drilling nitrogen foam drilling process, and gas drainage drilling nitrogen foam secondary unblocking process were designed, and the downward directional drilling nitrogen foam slag removal on-site industrial experiment was conducted. The results indicated that, the frictional drag force of the borehole wall and the centrifugal force at the bends could cause the aggregation of coal particles and increase the risk of borehole wall collapse. The coal powder particles carried by the gas will collide with the borehole wall to deform or detach the borehole wall, which would lead to the collapse and blockage of the extraction borehole. The theoretical system of downward directional drilling annulus nitrogen foam power law multiphase flow slag carrying and unblocking technology, which included nitrogen foam stability, fluidity, coal powder suspension performance, annular space foam pressure loss, and analysis of slag removal force, can well provide theoretical support for downward directional drilling nitrogen foam slag removal. In the on-site industrial experiments, the initial mixing and pure amount of the nitrogen foam slag removal drilling hole increased by 6.5 and 6.4 times, respectively, compared with the water drainage drilling hole, and the mixing and pure amount increased by about 10 times in 40 days, which indicated that the nitrogen foam slag carrying and unblocking technology can significantly improve the gas drainage efficiency of the downward directional drilling hole.

  • [1]
    秦 勇,袁 亮,程远平,等. 中国煤层气地面井中长期生产规模的情景预测[J]. 石油学报,2013,34(3):489−495.

    QIN Yong,YUAN Liang,CHENG Yuanping, et al. Scenario prediction of medium and long-term production scale of CBM surface wells in China [J]. Petroleum Journal,2013,34(3):489−495.
    [2]
    李贤忠,林柏泉,翟 成,等. 单一低透煤层脉动水力压裂脉动波破煤岩机理[J]. 煤炭学报,2013,38(6):918−923.

    LI Xianzhong,LIN Baiquan,ZHAI Cheng, et al. Mechanism of pulsating hydraulic fracturing pulsating wave breaking coal rock in single low permeability coal seam [J]. Journal of China Coal Society,2013,38(6) :918−923.
    [3]
    林柏泉,李子文,翟 成,等. 高压脉动水力压裂卸压增透技术及应用[J]. 采矿与安全工程学报,2011,28(3):452−455.

    LIN Baiquan,LI Ziwen,ZHAI Cheng, et al. High-pressure pulsating hydraulic fracturing pressure relief and permeability enhancement technology and its application[J]. Mining and Safety Engineering,2011,28(3):452−455.
    [4]
    韩晓明,张龙列,刘 瑜,等. 松软突出煤层水平钻孔反循环气力排屑机理[J]. 中国安全生产科学技术,2015,11( 5) :26−31.

    HAN Xiaoming,ZHANG Longlie,LIU Yu, et al. Mechanism of reverse circulation pneumatic chip removal by horizontal drilling in soft outburst coal seam [J]. China Safety Production Science and Technology,2015,11 (5) :26−31.
    [5]
    李尧斌,朱 丹. 钻孔抽采瓦斯量影响因素分析与工程实践[J]. 中国安全生产科学技术,2014,10(11):124−128.

    LI Yaobin,ZHU Dan. Analysis of influencing factors of gas extraction and engineering practice[J]. China Safety Production Science and Technology,2014,10(11):124−128.
    [6]
    石智军,董书宁,杨俊哲,等. 煤矿井下3000 m 顺煤层定向钻孔钻进关键技术[J]. 煤田地质与勘探,2019,47(6):1−7.

    SHI Zhijun,DONG Shuning,YANG Junzhe, et al. Key technologies of directional drilling along 3000 m coal seam in coal mine[J]. Coalfield Geology and Exploration,2019,47(6):1−7.
    [7]
    司春风. 下向钻孔抽采被保护层煤巷条带瓦斯的工艺技术研究[J]. 矿业安全与环保,2013,40(3):65−69.

    SI Chunfeng. Research on the technology of extracting strip gas from protected coal roadway by downward drilling[J]. Mining Safety and Environmental Protection,2013,40(3):65−69.
    [8]
    孟战成. 顺层瓦斯抽采钻孔全程下筛管技术和装置的研究与应用[J]. 煤炭工程,2019,51(3):54−59.

    MENG Zhancheng. The research and application of the technology and device for the entire process of downward screen tube in the drilling of layer by layer gas extraction[J]. Coal Engineering,2019,51(3):54−59.
    [9]
    冀前辉. 煤矿井下碎软煤层泡沫钻进关键技术研究[D]. 北京:煤炭科学研究总院,2020.

    JI Qianhui. Research on key technology of foam drilling in broken soft coal seam underground coal mine [D]. Beijing:China Coal Research Institute,2020.
    [10]
    曾春贵,陈 军,童文文. 下向抽采钻孔自动排水技术实践[J]. 中州煤炭,2011(8):78−80.

    ZENG Chungui,CHEN Jun,TONG Wenwen. Practice of automatic drainage technology for downward extraction boreholes[J]. Zhongzhou Coal,2011(8):78−80.
    [11]
    孟战成. 下行瓦斯抽采穿层钻孔排水技术及装置研究与应用[J]. 中国煤炭,2019,45(9):51−58.

    MENG Zhancheng. Research and application of drainage technology and device for downward gas drainage through boreholes[J]. China Coal,2019,45(9):51−58.
    [12]
    李 栋,卢义玉,王 洁,等. 瓦斯抽放孔射流排水排渣方法及实验研究[J]. 采矿与安全工程学报,2012,29(2):283−288.

    LI Dong,LU Yiyu,WANG Jie, et al. Gas drainage hole jet drainage slag discharge method and experimental study[J]. Journal of Mining and Safety Engineering,2012,29(2):283−288.
    [13]
    王海锋,李增华,杨永良,等. 钻孔风力排渣最小风速及压力损失研究[J]. 煤矿安全,2005,36(3):4−6.

    WANG Haifeng,LI Zenghua,YANG Yongliang, et al. Study on minimum wind speed and pressure loss of drilling wind slag[J]. Safety in Coal Mines,2005,36(3):4−6.
    [14]
    杨永良,李增华,高文举,等. 煤层钻孔风力排渣模拟实验研究[J]. 采矿与安全工程学报,2006,23 (4):415−418.

    YANG Haifeng,LI Zenghua,GAO Wenju, et al. Simulation experiment of wind power deslagging in coal seam drilling [J]. Journal of Mining and Safety Engineering,2006,23 (4) :415−418.
    [15]
    QU P,SHEN R C,LI F, et al. Time delay effect due to pore pressure changes and existence of cleats on borehole stability in coal seam[J]. International Journal of Coal Geology,2011,85(2):212−218. doi: 10.1016/j.coal.2010.10.013
    [16]
    王 振,梁运培,金洪伟. 防突钻孔失稳的力学条件分析[J]. 采矿与安全工程学报,2008,25(4):444−448.

    WANG Zhen,LIANG Yunpei,JIN Hongwei. Analysis of mechanical conditions for instability of outburst prevention boreholes[J]. Journal of Mining and Safety Engineering,2008,25(4):444−448.
    [17]
    伍 清,牛宜辉. 特殊地质条件下深钻孔排渣技术及应用[J]. 中国安全生产科学技术,2016,12(5):146−150.

    WU Qing,NIU Yihui. Technology and application of deep borehole slag removal under special geological conditions[J]. China Safety Production Science and Technology,2016,12(5):146−150.
    [18]
    朱亚飞. 防瓦斯超限综合措施在瓦斯抽采钻场中的实践与应用[J]. 能源与环保,2020,42(12):60−64,70.

    ZHU Yafei. Practice and application of comprehensive measures to prevent gas overrun in gas extraction drilling field[J]. Energy and Environmental Protection,2020,42(12):60−64,70.
    [19]
    蒋志刚. 松软突出煤层合理钻杆研制及应用[J]. 能源与环保,2019,41(4):135−138,142.

    JIANG Zhigang. Development and application of reasonable drill pipe for soft outburst coal seam[J]. Energy and Environmental Protection,2019,41(4):135−138,142.
    [20]
    杨虎伟,范运林. 高转速复合排渣钻进技术在松软突出煤层中的应用[J]. 煤炭工程,2019,51(3):50−53.

    YANG Huwei,FAN Yunlin. Application of high-speed composite slag removal drilling technology in soft outburst coal seams[J]. Coal Engineering,2019,51(3):50−53.
    [21]
    王国飞. 千米钻孔打钻防喷孔装置在双柳煤矿瓦斯抽采中的应用[J]. 能源与环保,2018,40(4) :37−39,43.

    WANG Guofei. Application of kilometre drilling and blowout prevention device in gas extraction in Shuangliu Coal Mine [ J ]. Energy and Environmental Protection,2018,40 (4) :37−39,43.
    [22]
    韩晓明,李佳良. 瓦斯抽采钻孔反循环气力排屑数值模拟[J]. 中国安全生产科学技术,2018,14(8):68−73.

    HAN Xiaoming,LI Jialiang. Numerical simulation of reverse circulation pneumatic chip removal in gas extraction boreholes[J]. China Safety Production Science and Technology,2018,14(8):68−73.
    [23]
    周宗勇. 松软低透煤层钻孔卸压增透技术研究[J]. 能源与环保,2018,40(3):16−19.

    ZHOU Zongyong. Research on drilling pressure relief and antireflection technology in soft and low permeability coal seam[J]. Energy and Environmental Protection,2018,40(3):16−19.
    [24]
    任仲久. 下向瓦斯抽采钻孔自动排水技术研究与应用[J]. 能源与环保,2018,40(1):31−35.

    REN Zhongjiu. Research and application of automatic drainage technology for downward gas extraction boreholes[J]. Energy and Environmental Protection,2018,40(1):31−35.
    [25]
    付孟雄,刘少伟,贾后省,等. 煤矿巷道底板锚固孔钻渣生成机理及尺寸特征分析[J]. 中国矿业大学学报,2021,50(2) :228−238.

    FU Mengxiong,LIU Shaowei,JIA Housheng, et al. Formation mechanism and size characteristics of drilling slag in anchoring holes of coal mine roadway floor [J]. Journal of China University of Mining and Technology,2021,50 (2) :228−238.
    [26]
    高建成,李迎旭,王 娟. 下行穿层瓦斯抽采钻孔排水与增采封孔工艺优化[J]. 能源与环保,2017,39(3):157−161.

    GAO Jiancheng,LI Yingxu,WANG Juan. Optimization of drainage and additional mining sealing process for downward cross-layer gas extraction boreholes[J]. Energy and Environmental Protection,2017,39(3):157−161.
    [27]
    刘建林. 双壁钻杆在空气潜孔锤反循环钻进中的应用研究[J]. 能源与环保,2017,39(1):39−42.

    LIU Jianlin. Application of double-wall drill pipe in reverse circulation drilling of air DTH hammer[J]. Energy and Environmental Protection,2017,39(1):39−42.
    [28]
    袁志坚. 大直径气举反循环成套钻具的研制[J]. 探矿工程( 岩土钻掘工程),2014,41(12):44−48.

    YUAN Zhijian. Development of large-diameter air-lift reverse circulation drilling tools[J]. Exploration Engineering ( Geotechnical Drilling Engineering ),2014,41(12):44−48.
    [29]
    孟晓红. 松软煤层瓦斯抽放钻孔塌孔机理及改进措施研究[D]. 太原:太原理工大学,2018.

    MENG Xiaohong. Study on collapse mechanism and improvement measures of gas drainage borehole in soft coal seam [D]. Taiyuan :Taiyuan University of Technology,2018.
    [30]
    刘 春. 松软煤层瓦斯抽采钻孔塌孔失效特性及控制技术基础[D]. 徐州:中国矿业大学,2014.

    LIU Chun. Failure characteristics and control technology of gas drainage borehole collapse in soft coal seam [D]. Xuzhou:China University of Mining and Technology,2014.
    [31]
    左伟芹,李运强,刘彦伟,等. 下向钻孔水渣输运机制与高效抽采实验研究[J]. 河南理工大学学报(自然科学版),2023,42(2):19−26.

    ZUO Weiqin,LI Yunqiang,LIU Yanwei, et al. Experimental study on water-slag transport mechanism and efficient extraction of downward boreholes [J]. Journal of Henan Polytechnic University (Natural Science Edition),2023,42 (2) :19−26.
    [32]
    张 建,王艳丽,吴国强. 空气泡沫钻进技术在复杂漏失地层中的应用[J]. 探矿工程(岩土钻掘工程),2012,39(8):32−35.

    ZHANG Jian,WANG Yanli,WU Guoqiang. Application of air foam drilling technology in complex leakage strata[J]. Exploration Engineering (Geotechnical Drilling Engineering),2012,39(8):32−35.
    [33]
    LI Y,KURU E. Numerical modelling of cuttings transport with foam in horizonal wells[J]. Journal of Canadian Petroleum Technology,2003,42(10):83−92.
    [34]
    董志鸣. 空气泡沫钻进在采空区域施工中的应用[J]. 中国煤炭地质,2017,29(2):62–64.

    DONG Zhiming. Application of air foam drilling in goaf construction [J]. China Coal Geology,2017,29 (2) :62–64.
    [35]
    GOTOVTSEV V M. Stability of foam flows in cylindrical channels:formation of a wall liquid layer during slow foam motion[J]. Theoretical Foundations of Chemical Engineering,2000,34(3):227−231. doi: 10.1007/BF02755970
    [36]
    AMIT Saxena,A K Pathak,KEKA Ojha, et al. Experimental and modeling hydraulic studies of foam drilling fluid flowing through vertical smooth pipes[J]. Egyptian Journal of Petroleum,2017,26(2):279−290. doi: 10.1016/j.ejpe.2016.04.006
    [37]
    BLAUER R E ,MITCHELL B J ,KOHLHAAS C A . Determination of laminar,turbulent,and transitional foam flow losses in pipes[C]//SPE California Regional Meeting. OnePetro,1974.
    [38]
    KUTAY S M. The physical and rheological properties of polymer-thickened foams in bulk and in porous media[D]. Alberta: University of Calgary (Canada),2000.
    [39]
    AHMED R M ,SAASEN A ,KURU E . Mathematical modeling of drilling foam flows[C]//CADE/CAODC Drilling Conference,2003.
    [40]
    HERZHAFT B,TOURE A,BRUNI F,et al. Aqueous foams for underbalanced drilling:the question of solids[C]//SPE Annual Technical Conference and Exhibition. SPE,2000.
    [41]
    李丽红,杨万成,李玉泉. 欠平衡泡沫钻井液技术在窿14井的应用[J]. 钻井液与完井液,2006,23(3):8−11.

    LI Lihong,YANG Wancheng,LI Yuquan. Application of underbalanced foam drilling fluid technology in Well Long 14[J]. Drilling Fluid and Completion Fluid,2006,23(3):8−11.
    [42]
    亚巴儿. 泡沫钻探消泡方法试验 研究及泡沫携岩屑能力数值模拟[D]. 吉林:吉林大学,2012.

    ABAR. Experimental study on foam drilling defoaming method and numerical simulation of foam cuttings carrying capacity [ D ]. Jilin:Jilin University,2012.
    [43]
    张端琴. 泡沬液性能及岩屑对泡沫钻井液稳定性影响的研究[D]. 吉林:吉林大学,2008.

    ZHANG Duanqin. Study on the effect of foam properties and cuttings on the stability of foam drilling fluid [D]. Jilin:Jilin University,2008.
    [44]
    张君亚. 也门1区块泡沫钻井参数计算与工艺技术 研究[D]. 北京:中国地质大学(北京),2011.

    ZHANG Junya. Parameter calculation and technology research of foam drilling in Block 1,Yemen [D]. Beijing:China University of Geosciences ( Beijing),2011.
    [45]
    朱继东. 泡沫增压钻进技术在北京地区地热井施工中的应用研究[D]. 吉林:吉林大学,2005.

    ZHU Jidong. Application of foam pressurization drilling technology in geothermal well construction in Beijing area [D]. Jilin:Jilin University,2005.
    [46]
    郝从猛. 下向钻孔机械破煤造穴快速卸压增透机制及瓦斯抽采技术研究[D]. 徐州:中国矿业大学,2021.

    HAO Congmeng. Downward drilling machinery breaks coal and makes holes to quickly relieve pressure and increase permeability mechanism and gas extraction technology research [D]. Xuzhou:China University of Mining and Technology,2021.
    [47]
    程荣超. 泡沫钻井液水平井段流动特性研究[D]. 北京:中国石油大学,2008.

    CHENG Rongchao. Study on flow characteristics of foam drilling fluid in horizontal section [D]. Beijing:China University of Petroleum,2008.
    [48]
    鲁 义,谷旺鑫,丁仰卫,等. 固结软煤层瓦斯抽采钻孔周围裂隙的弹性胶结材料研制[J]. 煤炭科学技术,2022,50(2):129−136.

    LU Yi,GU Wangxin,DING Yangwei, et al. Development of elastic cementing material for fractures around gas drainage boreholes in consolidated soft coal seams [J]. Coal Science and Technology,2022,50 (2) :129−136.
    [49]
    王 刚,李怀兴,常 博. 急倾斜煤层瓦斯钻孔有效抽采范围的精准确定[J]. 煤炭科学技术,2021,49(5):91−99.

    WANG Gang,LI Huaixing,CHANG Bo. Accurate determination of effective extraction range of gas drilling in steeply inclined coal seam [J]. Coal Science and Technology,2021,49 (5) :91−99.
    [50]
    王 亮,廖晓雪,褚 鹏,等. 瓦斯抽采穿层钻孔钻扩造穴卸压增透机理研究[J]. 煤炭科学技术,2021,49(5):75−82.

    WANG Liang,LIAO Xiaoxue,CHU Peng,et al. Study on the mechanism of pressure relief and permeability enhancement by drilling and expanding holes in gas extraction [J]. Coal science and technology,2021,49 (5) :75−82.
    [51]
    王兆丰,席 杰,陈金生,等. 底板岩巷穿层钻孔一孔多用瓦斯抽采时效性研究[J]. 煤炭科学技术,2021,49(1):248−256.

    WANG Zhaofeng,XI Jie,CHEN Jinsheng, et al. Study on timeliness of one-hole multi-purpose gas extraction in floor rock roadway [J]. Coal Science and Technology,2021,49 (1) :248−256.
    [52]
    程志恒,卢 云,苏士龙,等. 采空区顶板高位走向长钻孔高效抽采瓦斯机理研究[J]. 煤炭科学技术,2020,48(2):136−142.

    CHENG Zhiheng,LU Yun,SU Shilong, et al. Study on the mechanism of high-efficiency gas extraction by long boreholes with high-level strike in goaf roof [J]. Coal Science and Technology,2020,48 (2) :136−142.
    [53]
    孙永新,张 杰,马 强,等. 王坡煤矿碎软煤层高压氮气定向钻进试验研究[J]. 煤矿安全,2022,53(7):64−69,256.

    SUN Yongxin,ZHANG Jie,MA Qiang, et al. Experimental study on directional drilling with high pressure nitrogen in soft -fragmentized coal seam of Wangpo Coal Mine[J]. Safety in Coal Mines,2022,53(7):64−69,256.
  • Cited by

    Periodical cited type(2)

    1. 张宏杰,马凯. 基于螺旋钻进工艺的顺层孔施工参数优化研究. 煤矿机械. 2025(01): 105-111 .
    2. 姬战锁,齐黎明. 封孔器锥面端头与钻孔残留煤渣的力学作用分析及应用. 煤矿安全. 2024(08): 198-205 .

    Other cited types(0)

Catalog

    Article views (90) PDF downloads (34) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return