Advance Search

WU Zhaojian,HAN Xiaozhong,LI Zinan,et al. Sedimentary mechanism analysis of “Lower Coal and Upper Uranium” strata structure in Junggar Basin, Northern China[J]. Coal Science and Technology,2023,51(12):52−64

. DOI: 10.12438/cst.2023-0786
Citation:

WU Zhaojian,HAN Xiaozhong,LI Zinan,et al. Sedimentary mechanism analysis of “Lower Coal and Upper Uranium” strata structure in Junggar Basin, Northern China[J]. Coal Science and Technology,2023,51(12):52−64

. DOI: 10.12438/cst.2023-0786

Sedimentary mechanism analysis of “Lower Coal and Upper Uranium” strata structure in Junggar Basin, Northern China

Funds: 

National Key Researchand Development Program of China(2023YFC2906701); National Natural Science Foundation of China(42202088)

More Information
  • Received Date: May 19, 2023
  • Accepted Date: May 27, 2023
  • Available Online: December 05, 2023
  • Coal and sandstone-type uranium deposits in the Mesozoic coal-bearing basins in Northern China often show the stratigraphic structure of “lower coal and upper uranium”, indicating a good co-occurrence relationship between coal and uranium deposit. In order to precisely restrict the role of sedimentary factors in coal accumulation and uranium enrichment, and to explore the sedimentary mechanism of coal and uranium co-occurrence, we selected the Zhundong coalfield and its adjacent areas in the eastern Junggar Basin, where there are two sets of “lower coal and upper uranium” strata, as the research object. Based on the stratigraphic sequence analysis and isochronous stratigraphic framework construction, detailed sedimentary characterization of coal measure strata and an in-depth discussion of sedimentary evolution law are carried out. The results show that the Jurassic strata in the Zhundong coalfield and its adjacent areas is a complete second-order sequence consistent of multiple third-order depositional cycles of retrogradation-progradation, and the top and bottom are limited by regional unconformities. The retrogradation-progradation sedimentary cycle is the main reason for the superposition of coal measure strata and uranium reservoir. It controls the change of sedimentary environment and the spatial configuration of materials by accommodating spatial changes, and progradation corresponds to stronger coal accumulation and better uranium reservoir sand body than retrogradation. Moreover, The second-order sedimentary cycle has stronger compulsion than the third-order sedimentary cycle, which restricts “lower coal and upper uranium” formation structure of Badaowan Formation in the regressive environment in the second-order cycle to be much smaller than that in Xishanyao-Toutunhe Formation in the progradative environment. All these results will provide a theoretical basis for the prospect prediction of uranium mineralization in other coal-bearing basins, especially for the identification of new uranium reservoirs and new prospect areas.

  • [1]
    吴兆剑,韩效忠,林中湘,等. 中国北方主要中新生代盆地构造沉积气候演化及其成煤、铀意义[J]. 大地构造与成矿学,2020,44(4):710−724.

    WU Zhaojian,HAN Xiaozhong,LIN Zhongxiang, et al. Tectonic,sedimentary,and climate evolution of Meso-Cenozoic basins in North China and its significance of coal accumulation and uranium mineralization[J]. Geotectonica et Metallogenia,2020,44(4):710−724.
    [2]
    刘正邦,焦养泉,薛春纪,等. 内蒙古东胜地区侏罗系砂岩铀矿体与煤层某些关联性[J]. 地学前缘,2013,20(1):146−153.

    LIU Zhengbang,JIAO Yangquan,XUE Chunji, et al. The correlation between sandstone uranium ore-body and coal bed in Jurassic system,Dongsheng,Inner Mongolia[J]. Earth Science Frontiers,2013,20(1):146−153.
    [3]
    吴兆剑,韩效忠. 煤田资料的铀矿二次开发技术及其找矿意义:以二连盆地ZS煤田铀矿点的发现为例. 中国地质,2016,43(2):617–627.

    WU Zhao,HAN Xiaozhong. A new uranium exploring technical system for secondary development of coalfield data and its prospecting significance:A case study of the ZS coalfield,Erlian basin[J]. Geology in China,2016,43(2):617–627.
    [4]
    张 云,孙立新,张天福,等. 鄂尔多斯盆地东北缘煤铀岩系层序地层与煤铀赋存规律研究[J]. 地质学报,2016,90(12):3424–3440.

    ZHANG Yun,SUN Lixin,ZHANG Tianfu, et al. Sequence stratigraphy study of coal uranium bearing rock series and occurrence regularity coal and uranium in the Northeastern margin of Ordos Basin[J]. Acta Geologica Sinica,2016,90(12):3424–3440.
    [5]
    焦养泉,吴立群,荣 辉,等. 鄂尔多斯盆地直罗组聚煤规律及其对古气候和铀成矿环境的指示意义[J]. 煤炭学报,2021,46(7):2331–2345.

    JIAO Yangquan,WU Liquan,RONG Hui, et al. Coal accumulation regularity of Zhiluo Formation and its indication to paleoclimate and uranium metallogenic environment,Ordos Basin[J]. Journal of China Coal Society,2021,46(7):2331–2344.
    [6]
    秦彦伟,杜鹏飞,吕永华,等. 二连盆地赛汉塔拉凹陷宝拉格地区赛汉组层序地层与砂岩型铀成矿关系[J]. 铀矿地质,2023,39(2):216−227. doi: 10.3969/j.issn.1000-0658.2023.39.019

    QIN Yanwei,DU Pengfei,LV Yonghua, et al. Relationship between sequence stratigraphy of Saihan Formation and sandstone type uranium mineralization in Baolage Area,Saihantala Sag,Erlian Basin[J]. Uranium Geology,2023,39(2):216−227. doi: 10.3969/j.issn.1000-0658.2023.39.019
    [7]
    韩效忠,吴兆剑,林中湘,等. 准噶尔盆地东部构造抬升剥蚀对铀成矿的控制[J]. 煤炭学报,2023,48(9):3471−3482.

    HAN Xiaozhong,WU Zhaojian,LIN Zhongxiang,et al. The control of tectonic uplift and denudation on uranium mineralization in the eastern Junggar Basin[J]. Journal of China Coal Society,2023,48(9):3471−3482.
    [8]
    杨斌虎,罗静兰,戴亚权,等. 含铀砂岩中铀与有机质、油气和煤的关系:以鄂尔多斯盆地东胜地区和吐哈盆地十红滩地区为例[J]. 西北大学学报(自然科学版),2006,36(6):982−987,991. doi: 10.3321/j.issn:1000-274X.2006.06.029

    YANG Binhu,LUO Jinglan,DAI Yaquan, et al. Petrology of uranium-bearing sandstones and relationship of organic matters,hydrocarbons and coal with uranium:an example from Dongsheng,Ordos Basin and Shihongtan,Tuha Basin[J]. Journal of Northwest University(Natural Science Edition),2006,36(6):982−987,991. doi: 10.3321/j.issn:1000-274X.2006.06.029
    [9]
    宫文杰,张振强. 松辽盆地南部泉头组砂岩型铀矿成矿条件分析[J]. 地球学报,2010,31(6):813−818.

    GONG Wenjie,ZHANG Zhenqiang. Metallogenic condition analysis of the sandstone uranium deposit in Quantou formation,Southern Songliao Basin[J]. Acta Geoscientica Sinica,2010,31(6):813−818.
    [10]
    罗晶晶. 鄂尔多斯盆地北部大营砂岩型铀矿煤屑有机质特征及其成矿意义[D]. 西安:西北大学,2017.

    LUO Jingjing. Coal organic matter characteristic and metallogenic significance in Daying sandstone-type uranium,Ordos Basin[D]. Xi’an:Northwest University,2017.
    [11]
    赵天林,魏安军,田 亮,等. 二连盆地查干敖包地区赛汉组铀矿化特征及找矿方向[J]. 铀矿地质,2021,37(5):854−868.

    ZHAO Tianlin,WEI Anjun,TIAN Liang, et al. Uranium mineralization characteristics of Saihan Formation and the prospecting direction in Chagan’aobao Area,Erlian Basin[J]. Uranium Geology,2021,37(5):854−868.
    [12]
    焦养泉,陈安平,杨 琴,等. 砂体非均质性是铀成矿的关键因素之一:鄂尔多斯盆地东北部铀成矿规律探讨[J]. 铀矿地质,2005(1):8−15.

    JIAO Yangquan,CHEN Anping,YANG Qin, et al. Sand body heterogeneity:one of the key factors of uranium metallogenesis in Ordos basin[J]. Uranium Geology,2005(1):8−15.
    [13]
    谢惠丽,吴立群,焦养泉,等. 鄂尔多斯盆地罕台庙地区铀储层非均质性定量评价指标体系[J]. 地球科学,2016,41(2):279−292.

    XIE Huili,WU Liqun,JIAO Yangquan, et al. The quantitative evaluation index system for uranium reservoir Heterogeneity in HANTAIMIAO Region,Ordos Basin[J]. Earth Science,2016,41(2):279−292.
    [14]
    吴兆剑,闫茂华,韩效忠,等. 鄂尔多斯盆地北东部红庆梁地区铀成矿规律及其找矿意义[J]. 煤田地质与勘探,2019,47(1):22−31. doi: 10.3969/j.issn.1001-1986.2019.01.004

    WU Zhaojian,YAN Maohua,HAN Xiaozhong, et al. Uranium metallogenic characteristics and prospecting significance of Hongqingliang area in northeastern Ordos basin[J]. Coal Geology & Exploration,2019,47(1):22−31. doi: 10.3969/j.issn.1001-1986.2019.01.004
    [15]
    胡立飞,刘小刚. 鄂尔多斯盆地东北部农胜新地区直罗组下段下亚段砂体非均质性与铀矿化的关系[J]. 铀矿地质,2020,36(4):250−260. doi: 10.3969/j.issn.1000-0658.2020.04.003

    HU Lifei,LIU Xiaogang. The relation of uranium mineralization to the heterogeneity of sand body in the lower submember,lower member of zhiluo formation in nongshengxin Area,Northeastern Ordos Basin[J]. Uranium Geology,2020,36(4):250−260. doi: 10.3969/j.issn.1000-0658.2020.04.003
    [16]
    宋海瑞,柳东良,佟术敏,等. 陆家堡凹陷四方台组砂体非均质性特征与铀成矿关系[J]. 铀矿地质,2021,37(5):879−890.

    SONG Hairui,LIU Dongliang,TONG Shumin, et al. Heterogeneity of sand body in Sifangtai Formation and its relationship with uranium mineralization in Lujiapu Sag[J]. Uranium Geology,2021,37(5):879−890.
    [17]
    韩效忠,吴兆剑,林中湘,等. 浅论中国北方主要产铀盆地含矿目标层沉积相对砂岩型铀矿的制约[J]. 大地构造与成矿学,2020,44(4):697−709. doi: 10.16539/j.ddgzyckx.2020.04.011

    HAN Xiaozhong,WU Zhaojian,LIN Zhongxiang, et al. Constraints of sedimentary facies of the targeting layers on Sandstone-type Uranium mineralization in major uranium-producing basins in Northern China:A brief sisscussion[J]. Geotectonica et Metallogenia,2020,44(4):697−709. doi: 10.16539/j.ddgzyckx.2020.04.011
    [18]
    蒋 喆,韩效忠,胡 航,等. 二连盆地恩格日音砂岩型铀矿床地质特征及成矿作用初探[J]. 大地构造与成矿学,2020,44(4):742−753. doi: 10.16539/j.ddgzyckx.2020.04.014

    JIANG Zhe,HAN Xiaozhong,HU Hang, et al. Geological characteristics and ore-forming process of the engeriyin large sandstone-type uranium deposit in the manite depression,Erlian Basin[J]. Geotectonica et Metallogenia,2020,44(4):742−753. doi: 10.16539/j.ddgzyckx.2020.04.014
    [19]
    王国荣,贾为卫,杜 默,等. 准噶尔盆地南缘侏罗系辫状河沉积体系与铀成矿关系[J]. 铀矿地质,2021,37(3):342−354.

    WANG Guorong,JIA Weiwei,DU Mo, et al. Relationship between Jurassic braided river depositional system and uranium mineralization in the Southern Margin of Junggar Basin[J]. Uranium Geology,2021,37(3):342−354.
    [20]
    曹民强,荣 辉,陈振岩,等. 松辽盆地钱家店铀矿床层间氧化带结构定量表征及制约因素[J]. 地球科学,2021,46(10):3453−3466.

    CAO Minqiang,RONG Hui,CHEN Zhenyan, et al. Quantitative characterization and controlling factors of the interlayer oxidation zone of Qianjiadian URANIUM Deposit,Songliao Basin[J]. Earth Science,2021,46(10):3453−3466.
    [21]
    宋汉疆. 新疆准东煤田煤炭综合利用问题探讨[J]. 西部探矿工程,2008,20(9):149−151. doi: 10.3969/j.issn.1004-5716.2008.09.053

    SONG Hanjiang. Discussion on comprehensive utilization of coal in Zhundong Coalfield of Xinjiang[J]. West-China Exploration Engineering,2008,20(9):149−151. doi: 10.3969/j.issn.1004-5716.2008.09.053
    [22]
    黄红星,傅雪海,赵增平,等. 准噶尔盆地南缘急倾斜储层煤层气多层合采产出模拟研究[J]. 煤炭科学技术,2022,50(7):199−205.

    HUANG Hongxing,FU Xuehai,ZHAO Zengping, et al. Simulation study of multilayer coalbed methane production in steeply inclined reservoirs in the southern edge of Junggar Basin[J]. Coal Science and Technology,2022,50(7):199−205.
    [23]
    ZHOU J,ZHUANG X,ALASTUEY A, et al. Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin,Xinjiang province,China[J]. International Journal of Coal Geology,2010,82(1−2):51−67. doi: 10.1016/j.coal.2009.12.015
    [24]
    张云鹤,邵龙义,孙钦平,等. 海拉尔盆地旧桥凹陷伊敏组层序–古地理及聚煤特征[J]. 煤炭科学技术,2018,46(4):177−187.

    ZHANG Yunhe,SHAO Longyi,SUN Qinping, et al. Sequence-paleogeography and coal accumulation features ofJiuqiao Sag Yimin Formation in Hailaer Basin[J]. Coal Science and Technology,2018,46(4):177−187.
    [25]
    张利伟,严德天,刘文慧,等. 三塘湖盆地条湖凹陷中侏罗统西山窑组层序地层及聚煤规律[J]. 煤炭学报,2019,44(2):545−556.

    ZHANG Liwei,YAN Detian,LIU Wenhui, et al. Sequence strata and coal accumulation of Xishanyao Formation in Tiaohu sag of Santanghu Basin,Sinkiang[J]. Journal of China Coal Society,2019,44(2):545−556.
    [26]
    方世虎,郭召杰,宋 岩,等. 准噶尔盆地南缘侏罗纪沉积相演化与盆地格局[J]. 古地理学报,2005(3):347−356.

    FANG Shihu,GUO Zhaojie,SONG Yan, et al. Sedimentary facies evolution and basin pattern of the Jurassic in southern margin area of Junggar Basin[J]. Journal of Palaeogeography,2005(3):347−356.
    [27]
    王 佟,田 野,邵龙义,等. 新疆准噶尔盆地早–中侏罗世层序–古地理及聚煤特征[J]. 煤炭学报,2013,38(1):114−121.

    WANG Tong,TIAN Ye,SHAO Longyi, et al. Sequence-paleogeography and coal accumulation of the early and middle Jurassic in the Junggar Basin[J]. Journal of China Coal Society,2013,38(1):114−121.
    [28]
    陈彬滔,于兴河,王天奇,等. 准噶尔盆地南缘中下侏罗统含煤层系层序地层及聚煤控制因素[J]. 沉积学报,2014,32(1):61−67.

    CHEN Bintao,YU Xinghe,WANG Tianqi, et al. Characteristics of sequence stratigraphy and coal accumulation controlling factors of Lower-Middle Jurassic coal-bearing series,South Margin of JUNGGAR Basin,NW China[J]. Acta Sedimentologica Sinica,2014,32(1):61−67.
    [29]
    张奥博,汤达祯,唐淑玲,等. 准噶尔盆地南缘沉积控制下含煤层气系统构成研究[J]. 煤炭科学技术,2019,47(1):255−264.

    ZHANG Aobo,TANG Dazhen,TANG Shuling, et al. Study on composition of coalbed methane system under sedimentary control in southern margin of Junggar Basin[J]. Coal Science and Technology,2019,47(1):255−264.
    [30]
    李站伟,汤达祯,唐淑玲,等. 准噶尔盆地南缘富CO2低阶煤层气藏的形成机理研究[J]. 煤炭科学技术,2021,49(3):175−180.

    LI Zhanwei,TANG Dazhen,TANG Shuling, et al. Study on formation mechanism of CO2-enriched CBM reservoirs in low-rank coal seams from southern Zhunggar Basin[J]. Coal Science and Technology,2021,49(3):175−180.
    [31]
    WU Z,HAN X,JI H, et al. Mesozoic-Cenozoic tectonic events of eastern JUNGGAR Basin,NW China and their significance for uranium mineralization:Insights from seismic profiling and AFT dating analysis[J]. Ore Geology Reviews,2021,139:104488. doi: 10.1016/j.oregeorev.2021.104488
  • Related Articles

    [1]YAO Chunhong, LI Bobo, GAO Zheng, LI Jianhua, XU Jiang. Study on dual pore permeability model of coal under the conditions of pore pressure rise and fall[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(11): 116-121.
    [2]ZHANG Xuebo, WANG Hao, SHEN Shuaishuai. Effect of small faults activation on failure and permeability of overburden strata in goaf[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(2): 75-85.
    [3]JIANG Changbao, YU Tang, DUAN Minke, YIN Wenming. Study on permeability model under the influence of gas pressure and stress on fracture[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(2): 115-121. DOI: 10.13199/j.cnki.cst.2021.02.015
    [4]WANG Hongwei, WANG Gang, ZHANG Yue, CUI Shuai, XU Jian. Stress field and energy field distribution characteristics of faults under dynamic pressure[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (10).
    [5]LI Haowei LIU Hai WANG Zhaofeng ZHAN Mengqing, . Borehole sealing technology of gas pressure measurement in two stage variable diameter borehole with subhorizontal passed through strata drilling[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (10).
    [6]Wang Kaiwang. New borehole sealing technology of gas pressure measuring borehole based on PD sealing material[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (5).
    [7]Zhang Kexue He Manchao Jiang Yaodong, . Mechanism research of roadway pressure bump induced by fault slip and activation[J]. COAL SCIENCE AND TECHNOLOGY, 2017, (2).
    [8]Wu Wei Wang Zhaofeng, . Numerical simulation study on grouting pressure and borehole sealing depth of borehole sealing[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (11).
    [9]Wang Hanfeng. Analysis on coalbed methane sealing capacity of mudstone overpressurized layer[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (6).
    [10]Study on Water Injection Pressure Affected to Permeability and Water Pressure Distribution in Coal Body .[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (8).
  • Cited by

    Periodical cited type(3)

    1. 王东升, 徐强, 苗全芸, 张争光, 徐小涛, 郭红瑜, 李永臣, 林玉龙. 石嘴山矿区煤层气地质特征及单井产能评价. 中国煤炭地质. 2025(05)
    2. 谭远兵,张志军,石鑫,陈志浩,周瑞琦. 鲁班山北矿15采区瓦斯赋存特征及地面预抽采部署. 煤质技术. 2024(02): 61-72 .
    3. 徐明,张新过,贾军辉,郭帅昌,贾天让. 基于瓦斯地质单元划分的瓦斯赋存规律与瓦斯治理策略. 中国煤层气. 2024(05): 38-42 .

    Other cited types(2)

Catalog

    Article views (139) PDF downloads (60) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return