Citation: | MAN Ke,WU Liwen,LIU Xiaoli,et al. Prediction of TBM tunneling parameters and rockburst grade based on CNN-LSTM model[J]. Coal Science and Technology,2024,52(S2):21−37. DOI: 10.12438/cst.2023-0777 |
In order to improve the intelligent construction and disaster prediction capabilities of TBM in traffic water conservancy and deep coal mine engineering, the CNN-LSTM model combining the advantages of convolutional neural network (CNN) and long short-term memory neural network (LSTM) was proposed, and the tunnelling parameters in the stabilization stage of TBM tunnel and rockburst grade were predicted based on the Hanjiang River-Weihe River Water Conveyance Project. In addition, the TBM data was cleaned and preprocessed, the TBM data, geological parameters and rockburst grade were matched according to the station number, reasonable prediction indicators were screened out based on grey relation analysis. And the hyperparameters of the CNN-LSTM model were reasonably selected to obtain better prediction results, and the prediction results of other models were compared and analyzed. The research findings indicate that for the tunneling parameters of thrust (F), penetration (P), and torque (M) during the stable phase of TBM tunneling, the CNN-LSTM model predicts significantly lower and more stable mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) compared to other models. Among them, the torque (M) prediction effect is the best, the thrust (F) prediction effect is second, and the penetration (P) prediction effect is the worst. With the increase of rockburst grade, the cutterhead and cutter are severely impacted, and the prediction effect of different models for the above tunnelling parameters become worse, but the prediction results of CNN-LSTM model are within the effective range and have high robustness. The CNN-LSTM model's accuracy (ACC), precision (PRE), and recall (REC) in predicting the rockburst grade of TBM tunnels are significantly higher than those of other models, with accuracy (ACC), macro-precision (MPRE), and macro-recall (MREC) reaching 98.17%, 97.73%, and 98.58% respectively. According to the random sampling analysis of the model, the CNN-LSTM model has high robustness for different rockburst sample of the same capacity, which is significantly better than other models. In conclusion, the CNN-LSTM model is feasible and effective for predicting the TBM tunnelling parameters and rockburst grade.
[1] |
刘泉声,刘建平,潘玉丛,等. 硬岩隧道掘进机性能预测模型研究进展[J]. 岩石力学与工程学报,2016,35(S1):2766−2786.
LIU Quansheng,LIU Jianping,PAN Yucong,et al. Research advances of tunnel boring machine performance prediction for hard rock[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(S1):2766−2786.
|
[2] |
钱七虎,李朝甫,傅德明. 隧道掘进机在中国地下工程中应用现状及前景展望[J]. 地下空间与工程学报,2002,22(1):1−11,93. doi: 10.3969/j.issn.1673-0836.2002.01.001
QIAN Qihu,LI Chaopu,FU Deming. The present and prospect of application of tunneler in China’s underground engineering[J]. Chinese Journal of Underground Space and Engineering,2002,22(1):1−11,93. doi: 10.3969/j.issn.1673-0836.2002.01.001
|
[3] |
刘泉声,时凯,黄兴. TBM应用于深部煤矿建设的可行性及关键科学问题[J]. 采矿与安全工程学报,2013,30(5):633−641.
LIU Quansheng,SHI Kai,HUANG Xing. Feasibility of application of TBM in construction of deep coal mine and its key scientific problems[J]. Journal of Mining & Safety Engineering,2013,30(5):633−641.
|
[4] |
刘泉声,黄兴,潘玉从,等. TBM在煤矿巷道掘进中的技术应用和研究进展[J]. 煤炭科学技术,2023,51(1):249−259.
LIU Quansheng,HUANG Xing,PAN Yucong,et al. Application and research progress of TBM tunneling in coal mine roadway[J]. Coal science and Technology,2023,51(1):249−259.
|
[5] |
唐彬,唐永志,赵能,等. 煤矿微型TBM及其掘进瓦斯治理巷道工程实践[J/OL]. 煤炭科学技术:1−9[2023−05−09]. DOI: 10.13199/j.cnki.cst.mcq22-0918.
TANG Bin,TANG Yongzhi,ZHAO Neng,et al. Coal mine micro TBM and its applications on excavation of coal seam gases drainage roadways[J]. Coal science and Technology:1−9[2023−05−09]. DOI: 10.13199/j.cnki.cst.mcq22-0918.
|
[6] |
王冰山,王大龙,汪义龙,等. 白龙山煤矿一井瓦斯治理巷小直径TBM刀盘设计研究[J/OL]. 煤炭科学技术:1−10[2023−05−09]. DOI: 10.13199/j.cnki.cst.2022-1706.
WANG Bingshan,WANG Dalong,WANG Yilong,et al. Research on design of small diameter TBM cutterhead in gas control roadway of well 1 Bailongshan coal mine[J]. Coal science and Technology:1−10[2023−05−09]. DOI: 10.13199/j.cnki.cst.2022-1706.
|
[7] |
张照煌,高青风. 全断面岩石掘进机刀盘弯曲模型理论及应用[J]. 应用基础与工程科学学报,2018,26(5):1121−1129.
ZHANG Zhaohuang,GAO Qingfeng. Theory and application of full face rock tunnel boring machine cutterhead bending model[J]. Journal of Basic Science and Engineering,2018,26( 5):1121−1129.
|
[8] |
荆留杰,张娜,杨晨. TBM及其施工技术在中国的发展与趋势[J]. 隧道建设,2016,36(3):331−337. doi: 10.3973/j.issn.1672-741X.2016.03.014
JING Liujie,ZHANG Na,YANG Chen. Development of TBM and its construction technologies in China[J]. Tunnel Construction,2016,36(3):331−337. doi: 10.3973/j.issn.1672-741X.2016.03.014
|
[9] |
冯夏庭,肖亚勋,丰光亮,等. 岩爆孕育过程研究[J]. 岩石力学与工程学报,2019,38(4):649−673.
FENG Xiating,XIAO Yaxun,FENG Guangliang,et al. Study on the development process of rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(4):649−673.
|
[10] |
傅康. 基于机器学习的TBM隧道围岩分级方法及掘进参数优化研究[D]. 济南:山东大学,2021:1−120.
FU Kang. Research on TBM tunnel surrounding rock classification method and tunnelling parameters optimization based on machine learning[D]. Ji’nan:Shandong University,2021:1−120.
|
[11] |
ZHANG Zixin,WANG Shuaifeng,HUANG Xin,et al. Application of block theory for evaluating face stability under disc cutters loading of TBM,case study of a water-conveyance tunnel project[J]. Tunnelling and Underground Space Technology,2019,90:249−263. doi: 10.1016/j.tust.2019.05.002
|
[12] |
MAJEED Y,ABU BAKAR M Z,BUTT I A. Abrasivity evaluation for wear prediction of button drill bits using geotechnical rock properties[J]. Bulletin of Engineering Geology and the Environment,2020,79(2):767−787. doi: 10.1007/s10064-019-01587-y
|
[13] |
SNOWDON R A,RYLEY M D,TEMPORAL J. A study of disc cutting in selected British rocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1982,19(3):107−121.
|
[14] |
张庆龙,朱燕文,马睿,等. 基于注意力加强Bi-LSTM模型的TBM掘进参数预测研究[J]. 现代隧道技术,2022,59(4):69−80.
ZHANG Qinglong,ZHU Yanwen,MA Rui,et al. Study on prediction of TBM tunnelling parameters based on attention-enhanced Bi-LSTM model[J]. Modern Tunnelling Technology,2022,59(4):69−80.
|
[15] |
仉文岗,唐理斌,陈福勇,等. 基于4种超参数优化算法及随机森林模型预测TBM掘进速度[J]. 应用基础与工程科学学报,2021,29(5):1186−1200.
ZHANG Wengang,TANG Libin,CHEN Fuyong,et al. Prediction for TBM penetration rate using four hyperparameter optimization methods and random forest model[J]. Journal of Basic Science and Engineering,2021,29(5):1186−1200.
|
[16] |
张哲铭,李晓瑜,姬建. 基于LS-SVM的TBM掘进参数预测模型[J]. 河海大学学报(自然科学版),2021,49(4):373−379.
ZHANG Zheming,LI Xiaoyu,JI Jian. TBM excavation parameter prediction model based on LS-SVM method[J]. Journal of Hohai University(Natural Sciences),2021,49(4):373−379.
|
[17] |
周小雄,龚秋明,殷丽君,等. 基于BLSTM-AM模型的TBM稳定段掘进参数预测[J]. 岩石力学与工程学报,2020,39(S2):3505−3515.
ZHOU Xiaoxiong,GONG Qiuming,YIN Lijun,et al. Predicting boring parameters of TBM stable stage based on BLSTM networks combined with attention mechanism[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(S2):3505−3515.
|
[18] |
侯少康,刘耀儒,张凯. 基于IPSO-BP混合模型的TBM掘进参数预测[J]. 岩石力学与工程学报,2020,39(8):1648−1657.
HOU Shaokang,LIU Yaoru,ZHANG Kai. Prediction of TBM tunnelling parameters based on IPSO-BP hybrid model[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1648−1657.
|
[19] |
BARTON N N,LIEN R,LUNDE J. Engineering classification of rock masses for the design of tunnel support[J]. Rock Mechanics,1974,6(4):189−236. doi: 10.1007/BF01239496
|
[20] |
RUSSENES B F. Analysis of rock spalling for tunnel in steep valley sides(in Norwegian)[D]. Trondheim:Norwegian Institute of Technology,1974.
|
[21] |
全永威,王军,熊永润,等. 爆破扰动下TBM隧洞时滞型岩爆特征及影响机制研究[J]. 水文地质工程地质,2023,50(1):94−103.
QUAN Yongwei,WANG Jun,XIONG Yongrun,et al. Study on characteristics and influence mechanism of time delayed rockburst in TBM tunnel under blasting disturbance[J]. Hydrogeology & Engineering Geology,2023,50(1):94−103.
|
[22] |
蒋邦友,王连国,顾士坦,等. 基于能量原理的深埋隧洞TBM施工岩爆机理分析[J]. 采矿与安全工程学报,2017,34(6):1103−1109,1115.
JIANG Bangyou,WANG Lianguo,GU Shitan,et al. Study on rockburst mechanism of TBM excavation for deep tunnel based on energy principle[J]. Journal of Mining & Safety Engineering,2017,34(6):1103−1109,1115.
|
[23] |
杜立杰,洪开荣,王佳兴,等. 深埋隧道TBM施工岩爆特征规律与防控技术[J]. 隧道建设(中英文),2021,41(1):1−15.
DU Lijie,HONG Kairong,WANG Jiaxing,et al. Rockburst characteristics and prevention and control technologies for tunnel boring machine construction of deep-buried tunnels[J]. Tunnel Construction,2021,41(1):1−15.
|
[24] |
姚林林,赵明,钟果. 双护盾TBM施工隧洞岩爆特征微震监测研究[J]. 地下空间与工程学报,2018,14(5):1352−1358.
YAO Linlin,ZHAO Ming,ZHONG Guo. Research on characteristics of rockburst in tunnel excavated by double shield TBM based on micro-seismic monitoring[J]. Chinese Journal of Underground Space and Engineering,2018,14(5):1352−1358.
|
[25] |
谷建强. 基于微震监测的秦岭隧洞岩性转换带岩爆孕育机制[J]. 人民长江,2022,53(4):106−111.
GU Jianqiang. Study on mechanism of intense rockburst in lithologic transformation zone of Qinling Tunnel based on micro-seismic monitoring[J]. Yangtze River,2022,53(4):106−111.
|
[26] |
肖亚勋,冯夏庭,陈炳瑞,等. 深埋隧洞即时型岩爆孕育过程的频谱演化特征[J]. 岩土力学,2015,36(4):1127−1134.
XIAO Yaxun,FENG Xiating,CHEN Bingrui,et al. Evolution of frequency spectrum during instant rockbursts in deep inoculation tunnel[J]. Rock and Soil Mechanics,2015,36(4):1127−1134.
|
[27] |
韩侃,陈贤丰,杨文斌,等. 基于微震监测的川藏铁路某隧道岩爆预测研究[J]. 铁道工程学报,2020,37(11):90−95. doi: 10.3969/j.issn.1006-2106.2020.11.016
HAN Kan,CHEN Xianfeng,YANG Wenbin,et al. Research on the rock burst prediction of a tunnel in Sichuan-Tibet Railway based on micro-seismic monitoring[J]. Journal of Railway Engineering Society,2020,37(11):90−95. doi: 10.3969/j.issn.1006-2106.2020.11.016
|
[28] |
冯夏庭,赵洪波. 岩爆预测的支持向量机[J]. 东北大学学报(自然科学版),2002,23(1):57−59.
FENG Xiating,ZHAO Hongbo. Prediction of rockburst using support vector machine[J]. Journal of Northeastern University (Nature Science),2002,23(1):57−59.
|
[29] |
何 正,李晓红,卢义玉,等. BP神经网络模型在深埋隧道岩爆预测中的应用[J]. 地下空间与工程学报,2008(3):494−498. doi: 10.3969/j.issn.1673-0836.2008.03.019
HE Zheng,LI Xiaohong,LU Yiyu,et al. Application of BP neural network to the prediction of rockburst in Tongyu tunneling[J]. Chinese Journal of Underground Space and Engineering,2008(3):494−498. doi: 10.3969/j.issn.1673-0836.2008.03.019
|
[30] |
DONG L J,LI X B,PENG K. Prediction of rockburst classification using random forest[J]. Transactions of Nonferrous Metals Society of China,2013,23(2):472−477. doi: 10.1016/S1003-6326(13)62487-5
|
[31] |
杨悦增,邓红卫,虞松涛. 基于随机森林模型的岩爆等级预测研究[J]. 矿冶工程,2017,37(4):23−27. doi: 10.3969/j.issn.0253-6099.2017.04.006
YANG Yuezeng,DENG Hongwei,YU Songtao. Prediction of rockburst classification based on random forest[J]. Mining and Metallurgical Engineering,2017,37(4):23−27. doi: 10.3969/j.issn.0253-6099.2017.04.006
|
[32] |
陈卫忠,马池帅,田洪铭,等. TBM隧道施工期岩爆预测方法探讨[J]. 岩土力学,2017,38(S2):241−249.
CHEN Weizhong,MA Chishuai,TIAN Hongming,et al. Discussion on rockburst predictive method applying to TBM tunnel construction[J]. Rock and Soil Mechanics,2017,38(S2):241−249.
|
[33] |
LU Jianwei,GONG Qiuming,YIN Lijun,et al. Study on the tunneling response of TBM in stressed granite rock mass in Yinhan Water Conveyance tunnel[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research,2021,118:104197. doi: 10.1016/j.tust.2021.104197.
|
[34] |
王湘怡,周小雄,卢建炜,等. 基于机器学习的TBM隧道掘进岩爆预测[J]. 施工技术(中英文),2022,51(20):1−7.
WANG Xiangyi,ZHOU Xiaoxiong,LU Jianwei,et al. Rockburst prediction of TBM tunneling based on machine learning[J]. Construction Technology,2022,51(20):1−7.
|
[35] |
武东辉,许静,陈继斌,等. 基于融合注意力机制与CNN-LSTM的人体行为识别算法[J]. 科学技术与工程,2023,23(2):681−689. doi: 10.3969/j.issn.1671-1815.2023.02.032
WU Donghui,XU Jing,CHEN Jibin,et al. Human activity recognition algorithm based on CNN-LSTM with attention mechanism[J]. Science Technology and Engineering,2023,23(2):681−689. doi: 10.3969/j.issn.1671-1815.2023.02.032
|
[36] |
温钊,冉军,张宁,等. 基于CNN-LSTM的风力发电机组轴承异常检测[J]. 船舶工程,2022,44(S2):16−19.
WEN Zhao,RAN Jun,ZHANG Ning,et al. Abnormal bearing detection of wind turbine based on CNN-LSTM[J]. Ship Engineering,2022,44(S2):16−19.
|
[37] |
许振浩,马文,林鹏,等. 基于岩石图像迁移学习的岩性智能识别[J]. 应用基础与工程科学学报,2021,29(5):1075−1092.
XU Zhenhao,MA Wen,LIN Peng,et al. Intelligent lithology identification based on transfer learning of rock images[J]. Journal of Basic Science and Engineering,2021,29(5):1075−1092.
|
[38] |
周鸣亮,程文,张东明,等. 运营期盾构隧道结构病害的自动化检测与三维可视化[J]. 应用基础与工程科学学报,2021,29(5):1265−1279.
ZHOU Mingliang,CHENG Wen,ZHANG Dongming,et al. Automated 3D inspection and visualization of structural defects in shield tunnel linings[J]. Journal of Basic Science and Engineering,2021,29(5):1265−1279.
|
[39] |
郑涛,刘辉,陈薇,等. 基于CNN-LSTM的水泥熟料f-CaO预测模型[J]. 控制工程,2024,31(7):1263−1271.
ZHENG Tao,LIU Hui,CHEN Wei,et al. Cement clinker free calcium oxide prediction model based on CNN-LSTM[J]. Control Engineering of China2024,31(7):1263−1271.
|
[40] |
王愈轩,刘尔佳,黄永章. 基于CNN-LSTM-lightGBM组合的超短期风电功率预测方法[J]. 科学技术与工程,2022,22(36):16067−16074. doi: 10.3969/j.issn.1671-1815.2022.36.025
WANG Yuxuan,LIU Erjia,HUANG Yongzhang. An ultra-short-term wind power prediction method based on CNN-LSTM-lightGBM Combination[J]. Science Technology and Engineering,2022,22(36):16067−16074. doi: 10.3969/j.issn.1671-1815.2022.36.025
|
[41] |
张哲,秦博宇,高鑫,等. 基于CNN-LSTM网络的电网电压稳定紧急控制策略[J]. 电力系统自动化,2023,47(11):60−68. doi: 10.7500/AEPS20220712005
ZHANG Zhe,QIN Boyu,GAO Xin,et al. Emergency control strategy of power grid voltage stability based on convolutional neural network and long short-term memory network[J]. Automation of Electric Power Systems,2023,47(11):60−68. doi: 10.7500/AEPS20220712005
|
[42] |
吕建东,王新刚. 用于新冠肺炎CAR的类残差CNN-LSTM[J]. 计算机仿真,2023,40(1):339−344. doi: 10.3969/j.issn.1006-9348.2023.01.061
LV Jiandong,WANG Xingang. Residual-like CNN-LSTM for computer-aided recognition of covid-19[J]. Computer Simulation,2023,40(1):339−344. doi: 10.3969/j.issn.1006-9348.2023.01.061
|
[43] |
胡炜,杨兴国,周宏伟,等. 基于灰色关联分析的岩爆预测方法研究[J]. 人民长江,2011,42(9):38−42,63. doi: 10.3969/j.issn.1001-4179.2011.09.010
HU Wei,YANG Xingguo,ZHOU Hongwei,et al. Study on rock burst prediction method based on gray relational analysis theory[J]. Yangtze River,2011,42(9):38−42,63. doi: 10.3969/j.issn.1001-4179.2011.09.010
|
[44] |
刘春,易俊,姜德义,等. 基于灰色关联分析理论的岩爆烈度预测研究[J]. 中国矿业,2007,16(12):100−103. doi: 10.3969/j.issn.1004-4051.2007.12.031
LIU Chun,YI Jun,JIANG Deyi. Study on rockburst intensity prediction method based on gray relational analysis theory[J]. China Mining Magazine,2007,16(12):100−103. doi: 10.3969/j.issn.1004-4051.2007.12.031
|
[45] |
王胜乐. 引汉济渭TBM施工隧洞围岩分类方法研究及应用[D]. 西安:西安理工大学,2021.
WANG Shengle. Study and application of surrounding rock classification method for TBM tunnel construction of Hanjiang-Weihe River diversion project[J]. Xi’an:Xi’an University of technology,2021.
|
[46] |
孙振川,杨延栋,陈馈,等. 引汉济渭岭南TBM工程二长花岗岩地层滚刀磨损研究[J]. 隧道建设,2017,37(9):1167−1172. doi: 10.3973/j.issn.1672-741X.2017.09.016
SUN Zhenchuan,YANG Yandong,CHEN Kui,et al. Study of wear of disc cutter boring in monzonitic granite strata of Lingnan TBM section of Hanjiang River-Weihe River water conveyance project[J]. Tunnel Construction,2017,37(9):1167−1172. doi: 10.3973/j.issn.1672-741X.2017.09.016
|
[47] |
李潮,鲁义强,陈召,等. 矿用硬岩巷道机械化掘进破岩形式研究现状及展望[J/OL]. 煤炭科学技术:1−11[2023−05−09]. DOI: 10.13199/j.cnki.cst.2022-0211.
LI Chao,LU Yiqiang,CHEN Zhao,et al. Research status and prospect of rock breaking form in mechanized excavation of mining hard rock roadway[J]. Coal science and Technology:1−11[2023−05−09]. DOI: 10.13199/j.cnki.cst.2022-0211.
|
1. |
苗常盛,李雪交,杨俊辉,张继达,张文喆. 煤矿巷道中分岔管道瓦斯爆炸特性研究. 火工品. 2025(03): 108-112 .
![]() | |
2. |
丁文学,叶青,贾真真,王维建. H型隧道双爆源气体爆炸传播特性模拟研究. 中国安全生产科学技术. 2024(04): 122-128 .
![]() | |
3. |
王涛,董哲,盛禹淮,南凡,杨哲,杨鹏,孟帆,罗振敏. 卤代烷气体灭火剂促进-抑制瓦斯燃爆特性试验. 煤炭科学技术. 2024(04): 265-274 .
![]() | |
4. |
司荣军,牛宜辉,王磊,黄子超,贾泉升. 煤矿瓦斯煤尘爆炸的动力学特性研究进展. 工程爆破. 2023(01): 30-39 .
![]() | |
5. |
李敏,林志军,鲁义,施式亮,王德明,王丹. 基于模糊贝叶斯网络的煤矿瓦斯爆炸风险评估. 煤炭学报. 2023(S2): 626-637 .
![]() | |
6. |
宋双林. 自吸式泡沫发生器发泡机理及其优化设计. 煤炭科学技术. 2022(06): 239-244 .
![]() | |
7. |
镐振,孙光中. 特厚煤层回采巷道塑性区形态特征及演化规律研究. 煤炭科学技术. 2022(06): 77-83 .
![]() | |
8. |
高智慧,李雨成,张欢,赵涛,李俊桥. 瓦斯爆炸在角联通风管网中的传播特性研究. 中国安全生产科学技术. 2022(08): 72-78 .
![]() | |
9. |
贾进章,田秀媛,赵丹,王枫潇. 角联管网瓦斯爆炸冲击波与火焰波的传播特性. 爆破器材. 2022(05): 24-30 .
![]() |