Citation: | LIU Qi,SU Wei,ZHANG Ruiying,et al. Research on coal-geothermal collaborative exploration system in deep mines[J]. Coal Science and Technology,2024,52(3):87−94. DOI: 10.12438/cst.2023-0650 |
Under the trend of deep mining of coal resources, the problem of high temperature heat damage in mines is becoming increasingly serious, the heat source that causes high temperature heat damage in mines is actually sustainably used geothermal energy, extracting and utilizing geothermal energy from deep mines while mining coal is an innovative way to build green mines and reduce mine carbon dioxide emission. This paper summarizes the current situation of deep mineral and geothermal energy collaborative exploration at China and abroad, analyzes the feasibility in terms of processes and key equipment and finally proposes a system of coal-geothermal collaborative exploration. The system adopts closed cycle mode, including ground heat utilization system and underground extracting system, drilling horizontal holes and installing coaxial casing heat exchangers at the coal to extract the heat, and utilization of the extracted low-grade geothermal energy through the heat pump on ground. Adhering to the principle of “mining heat first and then mining” in terms of time and space coordination, the thermal mining face is divided in front of the mining work in advance, and two modes of sequential and alternating thermal mining are proposed to ensure that the thermal mining process does not interfere with the coal mining process. Analyzed key technologies including spatial collaborative design, coal seam drilling, efficient heat extraction, and intelligent monitoring and control. Conducted underground spatial collaborative design for coal mining and geothermal energy extraction, proposed a coaxial casing heat exchanger layout process based on coal seam water injection. Multiple combinations of quick assembly coaxial casing heat exchangers can be used to achieve efficient heat extraction. Building an intelligent monitoring and control platform and proposed relevant optimization models, building a heat extraction calculation model and propose an intelligent control heat extraction method. Simplify the heat transfer process of coal formations, construct a heat transfer model for heat extraction from coal to calculate and evaluate the heat capacity of the mining face based on its actual situation and the outlet airflow parameters. According to the heat transfer model, the initial temperature of coal, the coal transportation volume, and the outlet air flow temperature through mining face are the key parameters that determine the heat extraction from the coal. The heat extraction is the maximum when the moisture content of the air flow of the working face remains unchanged and the equivalent temperature of the air flow at the outlet of the working face is not higher than 28 ℃. The application of this system will converting heat damage of deep mine to useful resources, which not only solves the problem of heat damage of coal mining, but also realizes the comprehensive utilization of geothermal energy in deep mine.
[1] |
袁 亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,41(1):1−6.
YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1−6.
|
[2] |
袁 亮,张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报,2019,44(8):2277−2284.
YUAN Liang,ZHANG Pingsong. Development status and prospect of geological guarantee technology for precise coal mining[J]. Journal of China Coal Society,2019,44(8):2277−2284.
|
[3] |
张建民,李全生,张 勇,等. 煤炭深部开采界定及采动响应分析[J]. 煤炭学报,2019,44(5):1314−1325.
ZHANG Jianmin,LI Quansheng,ZHANG Yong,et al. Definition of deep coal mining and response analysis[J]. Journal of China Coal Society,2019,44(5):1314−1325.
|
[4] |
蓝 航,陈东科,毛德兵. 我国煤矿深部开采现状及灾害防治分析[J]. 煤炭科学技术,2016,44(1):39−46.
LAN Hang,CHEN Dongke,MAO Debing. Current status of deep mining and disaster prevention in China[J]. Coal Science and Technology,2016,44(1):39−46.
|
[5] |
黄炳香,赵兴龙,张 权. 煤与煤系伴生资源共采的理论与技术框架[J]. 中国矿业大学学报,2016,45(4):653−662.
HUANG Bingxiang,ZHAO Xinglong,ZHANG Quan. Framework of the theory and technology forsimultaneous mining of coal and its associated resources[J]. Journal of China University of Mining & Technology,2016,45(4):653−662.
|
[6] |
王根锁,刘宏磊,武 强,等. 碳中和背景下废弃矿山环境正效应资源化开发利用[J]. 煤炭科学技术,2022,50(6):321−28.
WANG Gensuo,LIU Honglei,WU Qiang,et al. Resource development and utilization of positive environmentalimpacts of abancloned mines under carbon neutrality[J]. Coal Science and Technology,2022,50(6):321−28.
|
[7] |
蔡美峰,多 吉,陈湘生,等. 深部矿产和地热资源共采战略研究[J]. 中国工程科学,2021,23(6):43−51. doi: 10.15302/J-SSCAE-2021.06.006
CAI Meifeng,DUO Ji,CHEN Xiangsheng,et al. Development Strategy for Co-mining of the Deep Mineral and Geothermal Resources[J]. Strategic Study of CAE,2021,23(6):43−51. doi: 10.15302/J-SSCAE-2021.06.006
|
[8] |
GHOREISHI-MADISEH S A,HASSANI F,ABBASY F. Numerical and experimental study of geothermal heat extraction from backfilled mine stopes[J]. Applied Thermal Engineering,2015,90:1119−1130. doi: 10.1016/j.applthermaleng.2014.11.023
|
[9] |
张 源,他旭鹏,师 鹏,等. 废弃矿井蓄洪储能与取热综合利用模式研究[J]. 煤炭科学技术,2023,51(6):197−204.
ZHANG Yuan,TA Xupeng,SHI Peng,et al. Energy storage via storing flood in abandoned mines and low temperature heat energy utilization from mine water[J]. Coal Science and Technology,2023,51(6):197−204.
|
[10] |
万志军,毕世科,张 源,等. 煤-热共采的理论与技术框架[J]. 煤炭学报,2018,43(8):2099−2106.
WAN Zhijun,BI Shike,ZHANG Yuan,et al. Framework of the theory and technology for simultaneous extraction of coal and geothermal resources[J]. Journal of China Coal Society,2018,43(8):2099−2106.
|
[11] |
毕世科,万志军,张洪伟,等. 唐口煤矿地热资源开发及利用研究[J]. 煤炭科学技术,2018,46(4):208−214.
BI Shike,WAN Zhijun,ZHANG Hongwei,et al. Research on development and utilization of geothermal resources in Tangkou Coal Mine[J]. Coal Science and Technology,2018,46(4):208−214.
|
[12] |
陈 柳,刘 浪,张 波,等. 基于蓄热充填体深井吸附降温机理[J]. 煤炭学报,2018,43(2):483−489.
CHEN Liu,LIU Lang,ZHANG Bo,et al. Mechanism of backfill thermal utilization adsorption cooling system in deep mine[J]. Journal of China Coal Society,2018,43(2):483−489.
|
[13] |
ZHANG Xiaoyan,LIU Li,LIU Lang,et al. Numerical simulation of heat release performance of filling body under condition of heat extracted by fluid flowing in buried tube[J]. Journal of Central South University,2019,26(8):2160−2174. doi: 10.1007/s11771-019-4163-y
|
[14] |
张 波,薛攀源,刘 浪,等. 深部充填矿井的矿床-地热协同开采方法探索[J]. 煤炭学报,2021,46(9):2824−2837.
ZHANG Bo,XUE Panyuan,LIU Lang,et al. Exploration on the method of ore deposit-geothermal energy synergeticmining in deep backfill mines[J]. Journal of China Coal Society,2021,46(9):2824−2837.
|
[15] |
张小艳,文 德,赵玉娇,等. 矿山蓄热/储能充填体的热-力性能与传热过程[J]. 煤炭学报,2021,46(10):3158−3171.
ZHANG Xiaoyan,WEN De,ZHAO Yujiao,et al. Thermal-mechanical properties and heat transfer process of heat storage/energy storage backfill body in mine[J]. Journal of China Coal Society,2021,46(10):3158−3171.
|
[16] |
ZHANG Xiaoyan,JIA Yuhang,WANG Mei,et al. Experimental Research on Heat Transfer and Strength Analysis of Backfill with Ice Grains in Deep Mines[J]. Sustainability,2019,11(9):2486. doi: 10.3390/su11092486
|
[17] |
宋 健,唐春安,亢方超. 深部矿产与地热资源协同开采模式[J]. 金属矿山,2020(5):124−131.
SONG Jian,TANG Chunan,KANG Fangchao. Synergetic Mining Mode of Deep Mineral and Geothermal Resources[J]. Metal Mine,2020(5):124−131.
|
[18] |
张吉雄,汪集暘,周 楠,等. 深部矿山地热与煤炭资源协同开发技术体系研究[J]. 工程科学学报,2022,44(10):1682−1693. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210007
ZHANG Jixiong,WANG Jiyang,ZHOU Nan,et al. Collaborative mining system of geothermal energy and coal resources in deep mines[J]. Chinese Journal of Engineering,2022,44(10):1682−1693. doi: 10.3321/j.issn.1001-053X.2022.10.bjkjdxxb202210007
|
[19] |
付海洋. 安居煤矿深地热能利用评估及热煤协同开采技术研究[D]. 徐州:中国矿业大学,2022.
FU Haiyang. The utilization evaluation of deep geothermal energy and research on thermal coal collaborative mining technology in Anju Coal Mine[D]. Xuzhou: China University of Mining and Technology,2022.
|
[20] |
王文婕,张淑含. 深部开采矿井地热能开发与热害协同防治技术[J]. 煤炭与化工,2022,45(9):87−90.
WANG Wenjie,ZHANG Shuhan. Cooperative prevention and control technology of geothermal energy development and thermal damage in deep mining mines[J]. Coal and Chemical Industry,2022,45(9):87−90.
|
[21] |
徐 宇,李孜军,贾敏涛,等. 深部矿井热害治理协同地热能开采构想及方法分析[J]. 中国有色金属学报,2022,32(5):1515−1527.
XU Yu,LI Zijun,JIA Mintao,et al. Conceptualization and method for synergetic mining of geothermal energy as solution to heat hazard control in deep mines[J]. The Chinese Journal of Nonferrous Metals,2022,32(5):1515−1527.
|
[22] |
CENK Yavuzturk,ANDREW D Chiasson. Performance analysis of U-tube,concentric tube,and standing column well ground heat exchangers using a system simulation approach[J]. ASHRAE Transactions,2002,108:925−938.
|
[23] |
李永强,徐拴海,张卫东,等. 套管式地埋管换热器热短路及换热性能[J]. 煤田地质与勘探,2020,48(1):183−188. doi: 10.3969/j.issn.1001-1986.2020.01.024
LI Yongqiang,XU Shuanhai,ZHANG Weidong,et al. Thermal short-circuiting and heat transfer performance of coaxial borehole heat exchanger[J]. Coal Geology & Exploration,2020,48(1):183−188. doi: 10.3969/j.issn.1001-1986.2020.01.024
|
[24] |
鲍玲玲,徐 豹,王子勇,等. 中深层同轴套管式地埋管换热器传热性能分析[J]. 地球物理学进展,2020,35(4):1217−1222. doi: 10.6038/pg2020DD0335
BAO Lingling,XU Bao,WANG Ziyong,et al. Heat transfer performance analysis of the middle-deep coaxial casing ground heat exchanger[J]. Progress in Geophysics,2020,35(4):1217−1222. doi: 10.6038/pg2020DD0335
|
[25] |
刘佑荣,唐辉明. 岩体力学[M]. 北京:化学工业出版社,2017.
|
[26] |
张双全. 煤化学[M]. 徐州:中国矿业大学出版社,2022.
|
[27] |
段忠丰,庞忠和,杨峰田. 华北地区煤系地层岩石热导率特征及对热害的影响[J]. 煤炭科学技术,2013,41(8):15−17,21.
DUAN Zhongfeng,PANG Zhonghe,YANG Fengtian. Features of coal-bearing strata rock thermal conductivity and influence on heat hazard in North China[J]. Coal Science and Technology,2013,41(8):15−17,21.
|
[28] |
鲁海峰,姚多喜,翁荔玉. 潘三井田煤系地层岩石热导率参数特征及大地热流研究[J]. 安徽理工大学学报(自然科学版),2018,38(05):25−29. doi: 10.3969/j.issn.1672-1098.2018.05.005
LU Haifeng,YAO Duoxi,WENG Liyu. Study on thermal conductivity parameters of rock in coal measure strata and terrestrial heat flow in pansan coal field[J]. Journal of Anhui University of Science and Technology(Natural Science),2018,38(05):25−29. doi: 10.3969/j.issn.1672-1098.2018.05.005
|
[29] |
刘 琪,苏 伟,冯 绪,等. 快速装配的地热能同轴套管换热器及组合换热单元[P]. 中国:ZL217929898U,2022-11-29.
|
[30] |
陶文铨. 传热学[M]. 北京:高等教育出版社,2019.
TAO Wenquan. Heat transfer[M]. Beijing:Higher Education Press,2019.
|