Citation: | LIU Xiangyu,YANG Renshu,YANG Liyun,et al. Research progress and prospect of advanced geological exploration in shaft and roadway driving[J]. Coal Science and Technology,2024,52(S1):145−152. DOI: 10.12438/cst.2023-0615 |
Mechanical rock breaking represented by boring machines is the direction of future development of vertical shaft and roadway excavation technology. In order to ensure the safety of rapid mechanical and intelligent excavation of shaft and roadway, advanced geological exploration is an essential link. The development status and characteristics of conventional advanced geological exploration technology and advanced geological exploration technology during excavation were classified and summarized from the aspects of detection range, applicable conditions, and advantages and disadvantages. Conventional advanced detection techniques each have a certain scope of application and have been well applied in the construction environment of blasting excavation method. When facing the complex construction environment of boring machines, conventional advanced detection techniques are difficult to apply. And advanced geological exploration technology during excavation can synchronously achieve excavation and advanced geological exploration, real-time prediction of unfavorable geology in front of the working face, which is the focus of research on advanced geological exploration technology for mechanized and intelligent excavation of shaft and roadway. The full face excavation machine for vertical shafts is the development direction and trend of comprehensive mechanized shaft sinking. However, its construction environment is very complex, and advanced geological detection based on seismic wave of boring machines rock breaking source is an effective prediction method. The difficulty of advanced detection method for rock breaking source of full face shaft boring machines lies in the dual complexity of construction environment and seismic wave field of rock breaking source. Solutions are proposed from multiple perspectives. For the source pilot signal, adopting multiple methods for joint denoising to suppress interference waves from rock breaking sources. For seismic record signals, a seismic record reconstruction method with cross correlation as the core is adopted to restore the effective wave field. Conduct research on full space three-dimensional detection and high-precision imaging of vertical shafts, etc. In addition, conducting joint inversion with multiple excavation geophysical methods can improve the reliability and interpretation accuracy of geological identification. The development of integrated equipment for excavation and exploration of vertical shaft tunneling machines is the direction of future in-depth research.
[1] |
谢和平,张茹,邓建辉,等. 基于“深地–地表”联动的深地科学与地灾防控技术体系初探[J]. 工程科学与技术,2021,53(4):1−12.
XIE Heping,ZHANG Ru,DENG Jianhui,et al. A preliminary study on the technical system of deep earth science and geo disaster prevention-control based on the “deep earth–surface” linkage strategy[J]. Advanced Engineering Sciences,2021,53(4):1−12.
|
[2] |
刘志强,李术才,王杜娟,等. 千米竖井硬岩全断面掘进机凿井关键技术与研究路径探析[J]. 煤炭学报,2022,47(8):3163−3174.
LIU Zhiqiang,LI Shucai,WANG Dujuan,et al. Analysis of key technology and research path of full section boring machine for 1000 km vertical shaft with hard rock strata[J]. Journal of China Coal Society,2022,47(8):3163−3174.
|
[3] |
荆国业,刘志强,韩博. 竖井掘进机钻井工艺及装备研究[J]. 中国煤炭,2018,44(5):65−70. doi: 10.3969/j.issn.1006-530X.2018.05.014
JING Guoye,LIU Zhiqiang,HAN Bo. Research on shaft sinking technology and equipment of mine shaft excavator[J]. China Coal,2018,44(5):65−70. doi: 10.3969/j.issn.1006-530X.2018.05.014
|
[4] |
荆国业,韩博,刘志强. 全断面竖井掘进机凿井技术[J]. 煤炭工程,2020,52(10):29−33.
JING Guoye,HAN Bo,LIU Zhiqiang. Research on sinking technology of full-section shaft boring machine[J]. Coal Engineering,2020,52(10):29−33.
|
[5] |
李术才,刘斌,孙怀凤,等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报,2014,33(6):1090−1113.
LI Shucai,LIU Bin,SUN Huaifeng,et al. State of art and trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(6):1090−1113.
|
[6] |
程久龙,李飞,彭苏萍,等. 矿井巷道地球物理方法超前探测研究进展与展望[J]. 煤炭学报,2014,39(8):1742−1750.
CHENG Jiulong,LI Fei,PENG Suping,et al. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods[J]. Journal of China Coal Society,2014,39(8):1742−1750.
|
[7] |
刘盛东,刘静,岳建华. 中国矿井物探技术发展现状和关键问题[J]. 煤炭学报,2014,39(1):19−25.
LIU Shengdong,LIU Jing,YUE Jianhua. Development status and key problems of Chinese mining geophysical technology[J]. Journal of China Coal Society,2014,39(1):19−25.
|
[8] |
张平松,李圣林,邱实,等. 巷道快速智能掘进超前探测技术与发展[J]. 煤炭学报,2021,46(7):2158−2173.
ZHANG Pingsong,LI Shenglin,QIU Shi,et al. Advance detection technology and development of fast intelligent roadway drivage[J]. Journal of China Coal Society,2021,46(7):2158−2173.
|
[9] |
陈磊,李术才,刘斌,等. 基于椭圆展开共反射点叠加的隧道地震波超前探测成像方法与应用[J]. 岩土工程学报,2018,40(6):1029−1038. doi: 10.11779/CJGE201806008
CHEN Lei,LI Shucai,LIU Bin,et al. Imaging method of seismic advanced detection in tunnels based on ellipse evolving CRP stacking and its application[J]. Chinese Journal of Geotechnical Engineering,2018,40(6):1029−1038. doi: 10.11779/CJGE201806008
|
[10] |
许新骥. TBM掘进破岩震源地震波超前地质探测方法及工程应用[D]. 济南:山东大学,2017.
XU Xinji. TBM rock-breaking source seismic method and its applications for ahead geological prospecting in TBM construction tunnel[D]. Jinan:Shandong University,2017.
|
[11] |
李术才,聂利超,刘斌,等. 多同性源阵列电阻率法隧道超前探测方法与物理模拟试验研究[J]. 地球物理学报,2015,58(4):1434−1446. doi: 10.6038/cjg20150429
LI Shucai,NIE Lichao,LIU Bin,et al. Advanced detection and physical model test based on multi-electrode sources array resistivity method in tunnel[J]. Chinese Journal of Geophysics,2015,58(4):1434−1446. doi: 10.6038/cjg20150429
|
[12] |
周官群,王亚飞,陈兴海,等. 掘进工作面“三角锥”型直流电法超前探测正演研究[J]. 煤炭学报,2022,47(8):3015−3023.
ZHOU Guanqun,WANG Yafei,CHEN Xinghai,et al. Research on forward modeling of “triangular cone” type direct current method for heading detection[J]. Journal of China Coal Society,2022,47(8):3015−3023.
|
[13] |
李术才,刘斌,李树忱,等. 基于激发极化法的隧道含水地质构造超前探测研究[J]. 岩石力学与工程学报,2011,30(7):1297−1309.
LI Shucai,LIU Bin,LI Shuchen,et al. Study of advanced detection for tunnel water-bearing geological structures with induced polarization method[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(7):1297−1309.
|
[14] |
张乐文,宿传玺,孙怀凤,等. 隧道瞬变电磁超前探测去噪方法试验研究与应用[J]. 岩石力学与工程学报,2018,37(S1):3353−3361.
ZHANG Lewen,SU Chuanxi,SUN Huaifeng,et al. Experiment study and application of de-nosing method in transient electromagnetic prediction in tunneling[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(S1):3353−3361.
|
[15] |
韩自强. 隧道掘进工作面附近金属物对瞬变电磁超前地质预报数据的影响及校正研究[J]. 地球物理学进展,2022,37(2):824−835. doi: 10.6038/pg2022FF0527
HAN Ziqiang. Influence and correction research of metal objects near the tunnel face on TEM advanced geological forecast data[J]. Progress in Geophysics,2022,37(2):824−835. doi: 10.6038/pg2022FF0527
|
[16] |
刘新荣,刘永权,杨忠平,等. 基于地质雷达的隧道综合超前预报技术[J]. 岩土工程学报,2015,37(S2):51−56.
LIU Xinrong,LIU Yongquan,YANG Zhongping,et al. Synthetic advanced geological prediction technology for tunnels based on GPR[J]. Chinese Journal of Geotechnical Engineering,2015,37(S2):51−56.
|
[17] |
刘宗辉,刘毛毛,周东,等. 基于探地雷达属性分析的典型岩溶不良地质识别方法[J]. 岩土力学,2019,40(8):3282−3290.
LIU Zonghui,LIU Maomao,ZHOU Dong,et al. Recognition method of typical anomalies in karst tunnel construction based on attribute analysis of ground penetrating radar[J]. Rock and Soil Mechanics,2019,40(8):3282−3290.
|
[18] |
李天斌,孟陆波,朱劲,等. 隧道超前地质预报综合分析方法[J]. 岩石力学与工程学报,2009,28(12):2429−2436. doi: 10.3321/j.issn:1000-6915.2009.12.007
LI Tianbin,MENG Lubo,ZHU Jin,et al. Comprehensive analysis method for advanced forecast ofgeology in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering,2009,28(12):2429−2436. doi: 10.3321/j.issn:1000-6915.2009.12.007
|
[19] |
周轮,李术才,许振浩,等. 隧道综合超前地质预报技术及其工程应用[J]. 山东大学学报(工学版),2017,47(2):55−62.
ZHOU Lun,LI Shucai,XU Zhenhao,et al. Integrated advanced geological prediction technology of tunnel and its engineering application[J]. Journal of Shandong University ( Engineering Science),2017,47(2):55−62.
|
[20] |
李俊杰,张红纲,王伟,等. 综合物探技术在灰岩地区隧洞超前预报中的应用[J]. 地质与勘探,2019,55(6):1452−1462. doi: 10.12134/j.dzykt.2019.06.011
LI Junjie,ZHANG Honggang,WANG Wei,et al. Application of integrated geophysical methods to advanced prediction of a tunnel in a limestone area[J]. Geology and Exploration,2019,55(6):1452−1462. doi: 10.12134/j.dzykt.2019.06.011
|
[21] |
张梦柯,赵前华,罗斌,等. 钻头随钻地震技术综述[J]. 地球物理学进展,2022,37(4):1677−1688. doi: 10.6038/pg2022FF0514
ZHANG Mengke,ZHAO Qianhua,LUO Bin,et al. Review of the drill bit seismic while drilling technology[J]. Progress in Geophysics,2022,37(4):1677−1688. doi: 10.6038/pg2022FF0514
|
[22] |
张凤凯. TBM破岩震源探测数据的全波形反演和逆时偏移成像方法[D]. 济南:山东大学,2020:14−17.
ZHANG Fengkai. Full waveform inversion and inverse time migration imaging method of the seismic data while tunneling using TBM drilling noise in tunnel[D]. Jinan:Shandong University,2020:14−17.
|
[23] |
高昕星,赵斌,路丽勇,等. 基于光纤电流传感的BEAM隧道超前地质预报方法[J]. 物探与化探,2018,42(2):412−421.
GAO Xinxing,ZHAO Bin,LU Liyong,et al. BEAM tunnel advanced geological prediction method based on optical fiber current sensing[J]. Geophysical and Geochemical Exploration,2018,42(2):412−421.
|
[24] |
覃思,程建远. 煤矿井下随采地震反射波勘探试验研究[J]. 煤炭科学技术,2015,43(1):116−119.
QIN Si,CHENG Jianyuan. Experimental study on seismic while mining for underground coal mine reflection survey[J]. Coal Science and Technology,2015,43(1):116−119.
|
[25] |
LI Shenglin,ZHANG Pingsong. Processing of random roadway source signals based on a cross-correlation algorithm in the deconvolution domain[J]. Exploration Geophysics,2021,52(1):98−108. doi: 10.1080/08123985.2020.1768798
|
[26] |
LI Shenglin,ZHANG Pingsong,XI Chaoqiang. Impulse processing algorithm for random source signals of roadheaders that is based on compound interferometry[J]. Journal of Environmental and Engineering Geophysics,2021,26(1):13−24. doi: 10.32389/JEEG20-026
|
[27] |
程久龙,程鹏,李亚豪. 基于IABC-ICA的随掘地震去噪方法[J]. 煤炭学报,2022,47(1):413−422. doi: 10.13225/j.cnki.jccs.YG21.1964
CHENG Jiulong,CHENG Peng,LI Yahao. Denoising method of mine seismic while drilling data based on IABC-ICA[J]. Journal of China Coal Society,2022,47(1):413−422. doi: 10.13225/j.cnki.jccs.YG21.1964
|
[28] |
ZHAO Shuanfeng,WEI Mingle,ZHANG Chuanwei,et al. Coal mine inclined shaft advanced detection method and physical model test based on shield cutterhead moving array electrodes[J]. Energies,2019,12(9):1−15.
|
[29] |
周小慧,宋桂桥,张卫华,等. 随钻地震技术及其新进展[J]. 石油物探,2016,55(6):913−923. doi: 10.3969/j.issn.1000-1441.2016.06.017
ZHOU Xiaohui,SONG Guiqiao,ZHANG Weihua,et al. Current research progress of seismic while drilling technology[J]. Geophysical Prospecting for Petroleum,2016,55(6):913−923. doi: 10.3969/j.issn.1000-1441.2016.06.017
|
[30] |
袁亮,张平松. TBM施工岩巷掘探一体化技术研究进展与思考[J]. 煤田地质与勘探,2023,51(1):21−32. doi: 10.12363/issn.1001-1986.22.12.0967
YUAN Liang,ZHANG Pingsong. Research progress and thinking on integrated tunneling and detection technology of rock roadway with TBM[J]. Coal Geology & Exploration,2023,51(1):21−32. doi: 10.12363/issn.1001-1986.22.12.0967
|
[1] | HAO Chunming, WANG Yantang, YI Sihai, LIU Shuo. Evolution of microbial carbon sequestration potential in farmland soil driven by natural restoration in coal mine subsidence area[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(7): 305-317. DOI: 10.12438/cst.2024-0681 |
[2] | YANG Ke, WEI Jiale, FU Qiang, LV Xin. Potential of underground space energy storage and carbon reduction benefits of closed/abandoned mines in Anhui Province[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(4): 45-55. DOI: 10.12438/cst.2025-0171 |
[3] | DING Yang, TANG Yuanzhuo, LI Shugang, ZHAO Hongchao, ZHU Bing, ZHANG Yizheng, ZHANG Yan. Numerical simulation of well location deployment scheme for CO2 sequestration in old goaf[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S2): 131-141. DOI: 10.12438/cst.2023-1303 |
[4] | LIU Lang, FANG Zhiyu, WANG Shuangming, GAO Guobin, ZHANG Bo, ZHAO Yujiao, ZHU Mengbo, LIU Zhichao, WANG Jingyu, ZHOU Jing, LI Yan, WANG Mei, ZHANG Xiaoyan, ZHOU Song, JIA Qifeng. Theoretical basis and technical conception of backfill carbon fixation in coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(2): 292-308. DOI: 10.12438/cst.2023-1485 |
[5] | CHEN Fu, SONG Xiaojun, DONG Wenxue, ZHU Yanfeng, YOU Yunnan, MA Jing. Effects of land reclamation on soil bacterial community assembly and carbon sequestration function in coal mine subsidence area: taking Dongtan Mining Area as an example[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(1): 345-354. DOI: 10.12438/cst.2023-1221 |
[6] | ZHANG Junjian, CHANG Xiangchun, LYU Dawei, WANG Dongdong, DAI Xuguang, ZHANG Xiaoyang, JI Yukun, LI Menghang, LIU Haiyan, ZHENG Xue. Carbon dioxide geological storage system in coal seam development area under the premise of double carbon target[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S1): 206-214. DOI: 10.13199/j.cnki.cst.2022-0538 |
[7] | GAO Fei, WANG Peng, SHAN Yafei. Study on the factors affecting the adsorption of CO2 from power plant flus gas in coal left in goaf area[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(9): 140-148. DOI: 10.13199/j.cnki.cst.2022-1037 |
[8] | CHEN Fu, ZHU Yanfeng, MA Jing, DONG Wenxue, YOU Yunnan, YANG Yongjun. Mechanism, potential and regulation of carbon sequestration and sink enhancement in ecological restoration of mining areas in the Loess Plateau[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 502-513. DOI: 10.13199/j.cnki.cst.2023-2250 |
[9] | QIN Botao, JIANG Wenjie, SHI Quanlin, XU Yizhen, SHAO Xu. Research progress on fly ash foundation technology to prevent and control spontaneous combustion of coal in mines[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(1): 329-342. DOI: 10.13199/j.cnki.cst.2022-2117 |
[10] | HE Xueqiu, TIAN Xianghui, SONG Dazhao. Progress and expectation of CO2 sequestration safety in coal seams[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(1): 212-219. |
1. |
张纯旺,金智新,冯国瑞,高瑞,李春. 废弃矿井采空区覆岩裂隙网络水气两相渗流特性研究. 中国矿业. 2024(08): 37-45 .
![]() | |
2. |
刘正茂,李虎,朱先博,李忠华,朱阳涛,李彪. 厚煤层综采工作面覆岩运动规律研究. 当代化工研究. 2024(24): 57-59 .
![]() |