Advance Search
WANG Fangtian,LI Zhe,ZHANG Cun,et al. Temporal and spatial evolution mechanism of large-diameter borehole pressurerelief and permeable gas seepage in high gas coal seam[J]. Coal Science and Technology,2024,52(S1):47−61. DOI: 10.12438/cst.2023-0530
Citation: WANG Fangtian,LI Zhe,ZHANG Cun,et al. Temporal and spatial evolution mechanism of large-diameter borehole pressurerelief and permeable gas seepage in high gas coal seam[J]. Coal Science and Technology,2024,52(S1):47−61. DOI: 10.12438/cst.2023-0530

Temporal and spatial evolution mechanism of large-diameter borehole pressurerelief and permeable gas seepage in high gas coal seam

Funds: 

National Natural Science Foundation of China (51974297); Central University Basic Research Funds Project (2023ZDPY03)

More Information
  • Received Date: February 14, 2023
  • Available Online: June 18, 2024
  • Mine gas extraction has the dilemma of low extraction rate, short effective extraction cycle, and substandard gas pre-extraction concentration. In order to realize the precise pressure relief and permeability of high gas and low gas permeability coal seam, taking the working face of high gas and low gas permeability coal seam in Shunhe Coal Mine 2404 as the research object, based on the methods of rheological theory modeling, COMSOL numerical analysis and field experiment, a multi-field coupling model of gas transport of large-diameter borehole pressure relief coal seam was constructed, and the determination index of the effective extraction radius of large-diameter borehole gas was proposed - the residual gas pressure did not exceed 0.22 MPa. The mechanism of pressure relief and permeability enhancement, as well as the law of gas migration in large diameter coal seam drilling, are unveiled: the gas pressure within a single large diameter coal seam drilling exhibits an elliptical distribution with the center of the drilling circle serving as its symmetrical center. In other words, the gas pressure gradually increases from the center towards the outer edges of the drilling circle. Furthermore, with prolonged drainage time, there is a gradual expansion of the standard drainage area. The stress transfer around the borehole is characterized by the fact that with the increase of extraction time, the vertical stress of the peripheral points of a single large-diameter borehole shows a trend of first increasing and then decreasing, and the technology of high-gas and low-gas permeability coal seam large-diameter borehole pressure relief and enhanced penetration extraction is proposed. The simulation determined the effective extraction radius of the borehole, and the drilling hole with a hole spacing of 6.0 m and a diameter of 300 mm had the best pressure relief and penetration enhancement effect, and the average permeability within 3.0 m on both sides was 1.58×10−15 m2, which was much greater than the initial value of 1.15×10−17 m2. The field application demonstrates that gas extraction in a large diameter borehole is significantly superior to that in an ordinary borehole. In a 300 mm large diameter borehole, the maximum gas volume fraction reaches 47.2%, whereas it only amounts to 10.6% in a 75 mm original borehole. Furthermore, the extraction duration of high gas volume fraction increases by 40.2% in the large diameter borehole. This approach effectively addresses the challenge of controlling small diameter gas boreholes and provides an efficient method for precise pressure relief and permeability enhancement of high gas coal seams.

  • [1]
    国家统计局. 中华人民共和国2021年国民经济和社会发展统计公报[N]. 中国信息报,2022−03−01(001).

    National Bureau of Statistics. Statistical communiqué of the People's Republic of China on national economic and social development in 2021[N]. China Information News,2022−0301(001).
    [2]
    王方田,李岗,班建光,等. 深部开采充填体与煤柱协同承载效应研究[J]. 采矿与安全工程学报,2020,37(2):311−318.

    WANG Fangtian,LI Gang,BAN Jianguang,et al. Synergistic bearing effect of backfilling body and coal pillar in deep mining[J]. Journal of Mining and Safety Engineering,2020,37(2):311−318.
    [3]
    秦勇,梁建设,申建,等. 沁水盆地南部致密砂岩和页岩的气测显示与气藏类型[J]. 煤炭学报,2014,39(8):1559−1565.

    QIN Yong,LIANG Jianshe,SHEN Jian,et al. Gas logging shows and gas reservoir types in tight sandstones and shales from southern Qinshui basin[J]. Journal of China Coal Society,2014,39(8):1559−1565.
    [4]
    WANG Fangtian ,MA Qi,ZHANG Cun,et al. Overlying strata movement and stress evolution laws triggered by fault structures in backfilling longwall face with deep depth[J]. Geomatics Natural Hazards and Risk,2020,11(1):949−966.
    [5]
    马念杰,李季,赵希栋,等. 深部煤与瓦斯共采中的优质瓦斯通道及其构建方法[J]. 煤炭学报,2015,40(4):742−748.

    MA Nianjie,LI Ji,ZHAO Xidong,et al. High-quality gas channel and its construction method applied to coal and gas simultaneous extraction in deep mining[J]. Journal of China Coal Society,2015,40(4):742−748.
    [6]
    ZHE Li,WANG Fangtian,REN Shuai,et al. Gas distribution mechanism in goaf during combined drainage of upper corner buried pipeline and intubation for thick coal seams[J]. Lithosphere,2021:8308256.
    [7]
    张村,韩鹏华,王方田,等. 采动水浸作用下矿井地下水库残留煤柱稳定性[J]. 中国矿业大学学报,2021,50(2):220−227,247.

    ZHANG Cun,HAN Penghua,WANG Fangtian,et al. The stability of residual coal pillar in underground reservoir with the effect of mining and water immersion[J]. Journal of China University of Mining and Technology,2021,50(2):220−227,247.
    [8]
    袁亮,郭华,沈宝堂,等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报,2011,36(3):357−365.

    YUAN Liang,GUO Hua,SHEN Baotang,et al. Circular overlying zone at longwall panel for efficient methane capture of multiple coal seams with low permeability[J]. Journal of China Coal Society,2011,36(3):357−365.
    [9]
    WANG Fangtian ,WANG Wen,WU Bisheng,et al. Mechanism,cause,and control of water,solutes,and gas migration triggered by mining activities[J]. Geofluids,2019:5789152.
    [10]
    苏现波,宋金星,郭红玉,等. 煤矿瓦斯抽采增产机制及关键技术[J]. 煤炭科学技术,2020,48(12):1−30.

    SU Xianbo,SONG Jinxing,GUO Hongyu,et al. Increasing production mechanism and key technology of gas extractionin coal mines[J]. Coal Science and Technology,2020,48(12):1−30.
    [11]
    李泉新,许超,刘建林,等. 煤矿井下全域化瓦斯抽采定向钻进关键技术与工程实践[J]. 煤炭学报,2022,47(8):3108−3116.

    LI Quanxin,XU Chao,LIU Jianlin,et al. Key technology and practice of directional drilling for gas drainage in all the mining time and space in underground coal mine[J]. Journal of China Coal Society,2022,47(8):3108−3116.
    [12]
    贾明群. 顶板高位定向钻孔正向多级大直径扩孔技术[J]. 工矿自动化,2020,46(8):117−122.

    JIA Mingqun. Forward multistage large diameter reaming technology for directional high level borehole in roof[J]. Journal of Mine Automation,2020,46(8):117−122.
    [13]
    米陇峰,王传留,高晓亮,等. 矿用大直径钻孔连杆式回拉扩孔钻头研发及应用[J]. 煤炭科学技术,2021,49(4):213−219.

    MI Longfeng,WANG Chuanliu,GAO Xiaoliang,et al. Development and application of linkage type pull back reamingbit for large diameter borehole in coal mine[J]. Coal Science and Technology,2021,49(4):213−219.
    [14]
    张永将,黄振飞,季飞. 基于水力割缝卸压的煤岩与瓦斯动力灾害防控技术[J]. 煤炭科学技术,2021,49(4):133−141.

    ZHANG Yongjiang,HUANG Zhenfei,JI Fei. Prevention and control technology of coal-rock and gas dynamic disaster based on water jet slotting pressure relief[J]. Coal Science and Technology,2021,49(4):133−141.
    [15]
    刘晓,张双斌,郭红玉. 煤矿井下长钻孔水力压裂技术研究[J]. 煤炭科学技术,2014,42(3):42−44.

    LIU Xiao,ZHANG Shuangbin,GUO Hongyu. Research on hydraulic fracturing technology of long borehole in coal mine[J]. Coal Science and Technology,2014,42(3):42−44.
    [16]
    BAI Qingsheng,LIU Zhenghe,ZHANG Cun,et al. Geometry nature of hydraulic fracture propagation from oriented perforations and implications for directional hydraulic fracturing[J]. Computers and Geotechnics,2020,125:103682. doi: 10.1016/j.compgeo.2020.103682
    [17]
    郑凯歌. 碎软低透煤层底板梳状长钻孔分段水力压裂增透技术研究[J]. 采矿与安全工程学报,2020,37(2):272−281.

    ZHENG Kaige. Permeability improving technology by sectional hydraulic fracturing for comb-like long drilling in floor of crushed and soft coal seam with low permeability[J]. Journal of Mining and Safety Engineering,2020,37(2):272−281.
    [18]
    马斌文,邓志刚,赵善坤,等. 钻孔卸压防治冲击地压机理及影响因素分析[J]. 煤炭科学技术,2020,48(5):35−40.

    MA Binwen,DENG Zhigang,ZHAO Shankun,et al. Analysis on the mechanism and influencing factors of drilling pressure relief to prevent rock burst[J]. Coal Science and Technology,2020,48(5):35−40.
    [19]
    杨睿月,黄中伟,李根生,等. 煤层气水平井水力喷射分段造穴技术探索[J]. 煤炭学报,2022,47(9):3284−3297.

    YANG Ruiyue,HUANG Zhongwei,LI Gensheng,et al. Investigation of hydraulic jet multistage cavity completion in coalbed methane horizontal wells[J]. Journal of China Coal Society,2022,47(9):3284−3297.
    [20]
    王亮,廖晓雪,褚鹏,等. 瓦斯抽采穿层钻孔钻扩造穴卸压增透机理研究[J]. 煤炭科学技术,2021,49(5):75−82.

    WANG Liang,LIAO Xiaoxue,CHU Peng,et al. Study on mechanism of permeability improvement for gas drainage by cross-seam cavitation borehole[J]. Coal Science and Technology,2022,47(9):75−82.
    [21]
    郝富昌,孙丽娟,左伟芹. 考虑流变特性的水力冲孔孔径变化规律及防堵孔技术[J]. 煤炭学报,2016,41(6):1434−1440.

    HAO Fuchang,SUN Lijuan,ZUO Weiqin. Hydraulic flushing aperture variation and anti-blocking technology considering rheological property[J]. Journal of China Coal Society,2016,41(6):1434−1440.
    [22]
    张福旺,秦汝祥,杨应迪. 密集水力冲孔增透抽采瓦斯试验研究[J]. 煤炭科学技术,2022,50(4):142−148.

    ZHANG Fuwang,QIN Ruxiang,YANG Yingdi. Experiment study on gas extraction with intensive hydraulic punching and penetration enhancement[J]. Coal Science and Technology,2022,50(4):142−148.
    [23]
    贾传洋,蒋宇静,张学朋,等. 大直径钻孔卸压机理室内及数值试验研究[J]. 岩土工程学报,2017,39(6):1115−1122. doi: 10.11779/CJGE201706018

    JIA Chuanyang,JIANG Yujing,ZHANG Xuepeng,et al. Laboratory and numerical experiments on pressure relief mechanism of large-diameter boreholes[J]. Chinese Journal of Geotechnical Engineering,2017,39(6):1115−1122. doi: 10.11779/CJGE201706018
    [24]
    秦贵成,李阳,舒龙勇. 本煤层分段水力造穴钻孔抽采半径考察试验研究[J]. 煤炭科学技术,2020,48(8):106−113.

    QIN Guicheng,LI Yang,SHU Longyong. Investigation and ex-peri mentation research on extraction radius of segmented hydraulic cavitation borehole in mining coalbed[J]. Coal Science and Technology,2020,48(8):106−113.
    [25]
    潘俊锋,闫耀东,马宏源,等. 一次成孔300 mm煤层大直径钻孔防冲效能试验[J]. 采矿与岩层控制工程学报,2022,4(5):5−15.

    PAN Junfeng,YAN Yaodong,MA Hongyuan,et al. Using 300 mm diameter boreholes for coal burst prevention a case study[J]. Journal of Mining and Strata Control Engineering,2022,4(5):5−15.
    [26]
    李宏,马金魁. 大直径顶板定向长钻孔替代高抽岩巷的瓦斯抽采效果分析[J]. 煤炭科学技术,2020,48(7):304−310.

    LI Hong,MA Jinkui. Analysis on gas drainage effect of large diameter roof directional long borehole instead of highdrainage rock roadway[J]. Coal Science and Technology,2020,48(7):304−310.
    [27]
    张春华,张子健,年军,等. 大直径双钻孔强化抽采瓦斯效应及效果分析[J]. 煤田地质与勘探,2021,49(6):273−280.

    ZHANG Chunhua,ZHANG Zijian,NIAN Jun,et al. Mechanism and effect analysis of enhanced gas drainage with large diameter double boreholes[J]. Coal Geology and Exploration,2021,49(6):273−280.
    [28]
    陈月霞,褚廷湘,陈鹏,等. 瓦斯抽采钻孔间距优化三维数值模拟量化研究[J]. 煤田地质与勘探,2021,49(3):78−84.

    CHEN Yuexia,CHU Tingxiang,CHEN Peng,et al. Quantitative study of 3D numerical simulation on optimizing borehole layout spacing of gas drainage[J]. Coal Geology & Exploration,2021,49(3):78−84.
    [29]
    程远平,董骏,李伟,等. 负压对瓦斯抽采的作用机制及在瓦斯资源化利用中的应用[J]. 煤炭学报,2017,42(6):1466−1474.

    CHENG Yuanping,DONG Jun,LI Wei,et al. Effect of negative pressure on coalbed methane extraction and application in the utilization of methane resource[J]. Journal of China Coal Society,2017,42(6):1466−1474.
    [30]
    曹佐勇,王恩元,何学秋,等. 近距离突出煤层群水力冲孔卸压瓦斯抽采及效果评价研究[J]. 采矿与安全工程学报,2021,38(3):634−641.

    CAO Zuoyong,WANG Enyuan,HE Xueqiu,et al. Effect evaluation of pressure relief and gas drainage of hydraulic punching in short-distance coal seam group with the risk of outburst[J]. Journal of Mining & Safety Engineering,2021,38(3):634−641.
    [31]
    张磊,阚梓豪,薛俊华,等. 循环加卸载作用下完整和裂隙煤体渗透性演变规律研究[J]. 岩石力学与工程学报,2021,40(12):2487−2499.

    ZHANG Lei,KAN Zihao,XUE Junhua,et al. Study on permeability law of intact and fractured coals under cyclic loading and unloading[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(12):2487−2499.
    [32]
    李波波,高政,杨康,等. 温度与孔隙压力耦合作用下煤岩吸附-渗透率模型研究[J]. 岩石力学与工程学报,2020,39(4):668−681.

    LI Bobo,GAO Zheng,YANG Kang,et al. Study on coal adsorption-permeability model under the coupling of temperature and pore pressure[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(12):668−681.
    [33]
    郝富昌,刘彦伟,龙威成,等. 蠕变-渗流耦合作用下不同埋深有效抽采半径研究[J]. 煤炭学报,2017,42(10):2616−2622.

    HAO Fuchang,LIU Yanwei,LONG Weicheng,et al. Effective gas extraction radius of different burial depths under creep-seepage coupling[J]. Journal of China Coal Society,2017,42(10):2616−2622.
    [34]
    于学馥,郑颖人,刘怀,等. 地下工程围压稳定性分析[M]. 北京:煤炭工业出版社,1983:239-244.
    [35]
    单鹏飞,张帅,来兴平,等. 不同卸压措施下“双能量”指标协同预警及调控机制分析[J]. 岩石力学与工程学报,2021,42(S2):3261−3273.

    SHAN Pengfei,ZHANG Shuai1,LAI Xingping,et al. Analysis of cooperative early warning and regulation mechanism of “dual energy” indicators under different pressure relief measures[J]. Chinese Journal of Rock Mechanics and Engineering,2021,42(S2):3261−3273.
    [36]
    郭平,曹树刚,张遵国,等. 煤体吸附膨胀变形模型理论研究[J]. 岩土力学,2014,35(12):3467−3472.

    GUO Ping,CAO Shugang,ZHANG Zunguo,et al. Theoretical study of deformation model of coal swelling induced by gas adsorption[J]. Rock and Soil Mechanics,2014,35(12):3467−3472.
    [37]
    林柏泉,刘厅,杨威. 基于动态扩散的煤层多场耦合模型建立及应用[J]. 中国矿业大学学报,2018,47(1):32−39.

    LIN Baiquan,LIU Ting,YANG Wei,et al. Solid-gas coupling model for coal seams based on dynamic diffusion and its application[J]. Journal of China University of Mining & Technology,2018,47(1):32−39.
    [38]
    李培超,孔祥言,卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展(A辑),2003,47(4):419−426.

    LI Peichao,KONG Xiangyan,LUDetang. Mathematical modeling of flow in saturated porous media on account of fluid-structure coupling effect[J]. Journal of Hydrodynamics,2003,47(4):419−426.
    [39]
    李立功,张晓雨,李超,等. 考虑孔径分布的低渗透煤层气体渗透率计算模型[J]. 煤炭学报,2019,44(4):1161−1168.

    LI Ligong,ZHANG Xiaoyu,LI Chao,et al. A computation model for gas permeability in low permeability coal seam considering the distribution of pore size[J]. Journal of China Coal Society,2019,44(4):1161−1168.
    [40]
    江明泉,康向涛,鄢朝兴,等. 正断层影响下顺层钻孔有效抽采半径研究[J]. 工矿自动化,2022,48(2):55−60.

    JIANG Mingquan,KANG Xiangtao,YAN Chaoxing. et al. Study on effective extraction radius of bedding borehole under the impact of normal fault[J]. Industry and Mine Automation,2022,48(2):55−60.
  • Cited by

    Periodical cited type(8)

    1. 张宏图, 周甜, 王登科, 李博涛, 罗勇, 潘荣生, 唐家豪, 卢卫永. 基于应力–扩散–渗流耦合模型的低渗煤层水力割缝增透效果分析. 煤田地质与勘探. 2025(06)
    2. 易恩兵. 不同循环加卸载路径含瓦斯煤体变形—渗流特征. 能源与环保. 2025(02): 1-8 .
    3. 王勃,徐凤银,刘文革,邵嗣华,王宁,文建东,程国玺,屈争辉,谢亚东,韩甲业,李志,徐波,杨卫华,张艺腾,李长兴. 煤矿瓦斯动力灾害地面治理关键技术与应用. 煤田地质与勘探. 2025(04): 30-45 .
    4. 刘勇,张汶定,陈长江,魏建平,徐向宇,张宏图,南勤聪,校朋伟. 松软煤层无水化增透理论及技术发展趋势. 煤炭学报. 2025(04): 2123-2146 .
    5. 袁腾飞,闫才,孔震,韩飞,徐波. 复杂高应力区掘进工作面冲击地压发生机理与防治技术研究. 煤矿现代化. 2024(05): 66-72 .
    6. 梅安平. 基于节流压降原理的煤层段水力造穴钻头研究. 煤矿安全. 2024(10): 207-213 .
    7. 兰安畅. 高瓦斯厚煤层穿层钻孔瓦斯抽采方案模拟优化. 当代化工研究. 2024(19): 122-124 .
    8. 杨鹏,吕伟伟,周梦影,刘洋,吴攀飞,任亚龙. 可控冲击波煤层增透技术在吉宁煤矿的应用. 中国矿业. 2024(S2): 308-313 .

    Other cited types(3)

Catalog

    Article views (66) PDF downloads (30) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return