Advance Search

LIU Juqing,LI Jun,WANG Xingjuan,et al. Design and implementation of quantitative remote sensing monitoring and intelligent analysis system for mine ecological environment[J]. Coal Science and Technology,2024,52(4):346−358

. DOI: 10.12438/cst.2023-0456
Citation:

LIU Juqing,LI Jun,WANG Xingjuan,et al. Design and implementation of quantitative remote sensing monitoring and intelligent analysis system for mine ecological environment[J]. Coal Science and Technology,2024,52(4):346−358

. DOI: 10.12438/cst.2023-0456

Design and implementation of quantitative remote sensing monitoring and intelligent analysis system for mine ecological environment

Funds: 

National Natural Science Foundation of China Funding Project (42271480); Basic Research Funding Projects of Central Universities (2022JCCXDC04, 2023ZKPYDC10)

More Information
  • Received Date: March 31, 2023
  • Available Online: April 09, 2024
  • Mine ecological environment monitoring and governance is a critical requirement for national ecological civilization construction and the dual carbon goal. The informatization and intelligent construction of the mine ecological environment have become an important part of Digital China driven by the new generation of information technology, and it is also an inevitable trend in the development of the current era. However, existing mine ecological environment monitoring systems are still in the primary stage with a single theme, incomplete elements, basic measurement, and local management, and they cannot meet the demand for multi-element, long-term, high-frequency monitoring and analysis of the mine ecological environment. To address this problem, the quantitative remote sensing monitoring and intelligent analysis system for the mine ecological environment under B/S architecture is proposed, called Mine Ecology Remote Eyes. The development requirements, technical framework, key technologies, and core functions of the system are further described in detail. The system utilizes satellite remote sensing technology and other monitoring methods to obtain and aggregate mine ecological big data from different sources, forming a map of mine distribution and data resource services. Using quantitative remote sensing to invert ecological parameters of mine environments, a set of long-term and multi-element monitoring products can be generated. These products cover various ecological elements such as human activities, natural geographical conditions, and “vegetation-soil-water-atmosphere” parameters. The system provides a range of tools for GIS spatial and temporal analysis, statistical analysis, and comprehensive quantitative evaluation. With these tools, users can monitor spatial changes in ecological parameters such as land use and normalized difference vegetation index (NDVI) in mining areas along with mining activities, as well as query and visualize historical statistical values of ecological elements such as soil water content and suspended solids concentration in water under different spatiotemporal locations or regions. Additionally, the system enables comprehensive quantitative evaluation of the quality of the mine ecological environment taking into account multiple ecological elements. Finally, the system generates a monitoring report on ecological disturbance and governance of the mine. The application of Mine Ecology Remote Eyes will facilitate the change monitoring, data management, intelligent analysis, and decision-making applications of the mine ecological environment. This system has the potential to improve the efficiency and intelligence level of monitoring and governance of the mine ecological environment, and provides a reference for promoting the informatization of ecological civilization.

  • [1]
    武 强,刘宏磊,赵海卿,等. 解决矿山环境问题的“九节鞭”[J]. 煤炭学报,2019,44(1):10−22.

    WU Qiang,LIU Honglei,ZHAO Haiqing,et al. Discussion on the nine aspects of addressing environmental problems of mining[J]. Journal of China Coal Society,2019,44(1):10−22.
    [2]
    刘 峰,郭林峰,赵路正. 双碳背景下煤炭安全区间与绿色低碳技术路径[J]. 煤炭学报,2022,47(1):1−15.

    LIU Feng,GUO Linfeng,ZHAO Luzheng. Research on coal safety range and green low-carbon technology path under the dual-carbon background[J]. Journal of China Coal Society,2022,47(1):1−15.
    [3]
    VARINDER Saini,RAVI P. Gupta,MANOJ K. Arora. Environmental impact studies in coalfields in India:a case study from Jharia coal-field[J]. Renewable and Sustainable Energy Reviews,2016,53:1222−1239. doi: 10.1016/j.rser.2015.09.072
    [4]
    彭苏萍,毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报,2020,45(4):1211−1221.

    PENG Suping,BI Yinli. Strategic consideration and core technology about environmental ecological restoration in coalmine areas in the Yellow River basin of China[J]. Journal of China Coal Society,2020,45(4):1211−1221.
    [5]
    李树志,李学良,尹大伟. 碳中和背景下煤炭矿山生态修复的几个基本问题[J]. 煤炭科学技术,2022,50(1):286−292.

    LI Shuzhi,LI Xueliang,YIN Dawei. Several basic issues of ecological restoration of coal mines under background of carbon neutrality[J]. Coal Science and Technology,2022,50(1):286−292.
    [6]
    谢和平,任世华,谢亚辰,等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报,2021,46(7):2197−2211.

    XIE Heping,REN Shihua,XIE Yachen,et al. Development opportunities of the coal industry towards the goal of carbon neutrality[J]. Journal of China Coal Society,2021,46(7):2197−2211.
    [7]
    卞正富,于昊辰,韩晓彤. 碳中和目标背景下矿山生态修复的路径选择[J]. 煤炭学报,2022,47(1):449−459.

    BIAN Zhengfu,YU Haochen,HAN Xiaotong. Solutions to mine ecological restoration under the context of carbon[J]. Journal of China Coal Society,2022,47(1):449−459.
    [8]
    雷少刚,卞正富,杨永均. 论引导型矿山生态修复[J]. 煤炭学报,2022,47(2):915−921.

    LEI Shaogang,BIAN Zhengfu,YANG Yongjun. Discussion on the guided restoration for mine ecosystem[J]. Journal of China Coal Society,2022,47(2):915−921.
    [9]
    李 军,彭苏萍,张成业,等. 矿区生态环境定量遥感监测评价技术框架与应用[J]. 矿业科学学报,2022,7(1):9−25, 88.

    LI Jun,PENG Suping,ZHANG Chengye,et al. Quantitative remote sensing-based monitoring and evaluation of the ecological environment in mining areas:technology framework and application[J]. Journal of Mining Science and Technology,2022,7(1):9−25, 88.
    [10]
    KOPEĆ A,TRYBAŁA P,GŁĄBICKI D,et al. Application of remote sensing,gis and machine learning with geographically weighted regression in assessing the impact of hard coal mining on the natural environment[J]. Sustainability,2020,12,(22):9338.
    [11]
    吴立新,余接情,胡青松,等. 数字矿山与智能感控的统一空间框架与精确时间同步问题[J]. 煤炭学报,2014,39(8):1584−1592.

    WU Lixin,YU Jieqing,HU Qingsong,et al. Unified spatial framework and precise time synchronization for digital mine and mine intelligent perception-control[J]. Journal of China Coal Society,2014,39(8):1584−1592.
    [12]
    王国法,张铁岗,王成山,等. 基于新一代信息技术的能源与矿业治理体系发展战略研究[J]. 中国工程科学,2022,24(1):176−189. doi: 10.15302/J-SSCAE-2022.01.019

    WANG Guofa,ZHANG Tiegang,WANG Chengshan,et al. Development of energy and mining governance system based on new-generation information technology[J]. Strategic Study of CAE,2022,24(1):176−189. doi: 10.15302/J-SSCAE-2022.01.019
    [13]
    中共中央国务院印发《数字中国建设整体布局规划》[EB/OL],http://www.gov.cn/zhengce/2023-02/27/content_5743484.htm,2023/2023.
    [14]
    章少民. 中国生态环境信息化:30年历程回顾与展望[J]. 环境保护,2021,49(2):37−44.

    ZHANG Shaomin. Ecology and environment informatization in china:30 years development and expectation[J]. Environmental Protection,2021,49(2):37−44.
    [15]
    吴立新,殷作如,邓智毅,等. 论21世纪的矿山:数字矿山[J]. 煤炭学报,2000,23(4):337−342.

    WU Lixin,YIN Zuoru,DENG Zhiyi,et al. Research to the mine in the 21st century:digital mine[J]. Journal of China Coal Society,2000,23(4):337−342.
    [16]
    卢新明,尹 红. 数字矿山的定义、内涵与进展[J]. 煤炭科学技术,2010,38(1):48−52.

    LU Xinming,YIN Hong. Definition,connotations and progress of digital mine[J]. Coal Science and Technology,2010,38(1):48−52.
    [17]
    毕 林,王晋淼. 数字矿山建设目标、任务与方法[J]. 金属矿山,2019(6):148−156.

    BI Lin,WANG Jinmiao. Construction target,task and method of digital mine[J]. Metal Mine,2019(6):148−156.
    [18]
    汪云甲. 矿区生态扰动监测研究进展与展望[J]. 测绘学报,2017,46(10):1705−1716.

    WANG Yunjia. Research progress and prospect on ecological disturbance monitoring in mining area[J]. Acta Geodaetica et Cartographica Sinica,2017,46(10):1705−1716.
    [19]
    徐良骥,刘曙光,孟雪莹,等. 煤矿沉陷水域重金属含量高光谱反演[J]. 煤炭学报,2019,44(11):3539−3546.

    XU Liangji,LIU Shuguang,MENG Xueying,et al. Hyperspectral inversion of heavy metal content in subsided waters of coal mines[J]. Journal of China Coal Society,2019,44(11):3539−3546.
    [20]
    范立民,吴群英,彭 捷,等. 黄河中游大型煤炭基地地质环境监测思路和方法[J]. 煤炭学报,2021,46(5):1417−1427.

    FAN Limin,WU Qunying,PENG Jie. Thoughts and methods of geological environment monitoring for large coal bases in the middle reaches of the Yellow River[J]. Journal of China Coal Society,2021,46(5):1417−1427.
    [21]
    马明舟,武文波,樊 硕. 矿区基础地理信息系统的建立研究[J]. 测绘科学,2009,34(S1):153−154, 52.

    MA Mingzhou,WU Wenbo,FAN Shuo. The establishment of mining area base geographic information system[J]. Science of Surveying and Mapping,2009,34(S1):153−154, 52.
    [22]
    相诗尧,陈宜金,徐东晶. 基于GIS的露天煤矿多源空间数据管理系统[J]. 工矿自动化,2015,41(12):1−4.

    XIANG Shiyao,CHEN Yijin,XU Dongjing. Management system of multi-source spatial data in open pit coal mine based on GlS[J]. Journal of Mine Automation,2015,41(12):1−4.
    [23]
    CHOI Y,BAEK J,PARK S. Review of GIS-based applications for mining:planning,operation,and environmental management[J]. Applied Sciences,2020,10(7):2266. doi: 10.3390/app10072266
    [24]
    KIM Sung-min,CHOI Yosoon,SUH Jangwon,et al. ArcMine:a GIS extension to support mine reclamation planning[J]. Computers & Geosciences,2012,46:84−95.
    [25]
    简煊祥,杨永均. 基于空间信息技术的矿区生态监测系统[J]. 中国矿业,2013,22(5):53−56.

    JIAN Xuanxiang,YANG Yongjun. Ecological monitoring system in mining area based on space information technique[J]. China Mining Magazine,2013,22(5):53−56.
    [26]
    曹志国,王瑞国,何瑞敏. 基于WEB-GIS的矿区生态监测与管理信息系统[J]. 煤炭工程,2018,50(3):161−163, 168.

    CAO Zhiguo,WANG Ruiguo,HE Ruimin. Ecological environment monitoring and management information system of coal mining area based on WEB-GIS[J]. Coal Engineering,2018,50(3):161−163, 168.
    [27]
    吴振华. 基于3S集成技术的半干旱草原区大型露天煤炭基地景观格局优化研究[D]. 徐州:中国矿业大学,2020:1-3.

    WU Zhenhua. Study on landscape pattern optimization of large-scale surface coal base in semi-arid steppe based on 3S integrated technology[D]. Xuzhou: China University of Mining and Technology, 2020:1-3
    [28]
    杨泽发,张庆君,丁晓利,等. 基于地球同步轨道InSAR每日生成DEM质量分析[J]. Engineering,2020,6(8):913−925. doi: 10.1016/j.eng.2020.07.003

    YANG Zefa,ZHANG Qingjun,DING Xiaoli,et al. Analysis of the quality of daily DEM generation with geosynchronous InSAR[J]. Engineering,2020,6(8):913−925. doi: 10.1016/j.eng.2020.07.003
    [29]
    张成业,李 军,雷少刚,等. 矿区生态环境定量遥感监测研究进展与展望[J]. 金属矿山,2022,51(3):1−27.

    ZHANG Chengye,LI Jun,LEI Shaogang,et al. Progress and prospect of the quantitative remote sensing for monitoring the eco-environment in mining area[J]. Metal Mine,2022,51(3):1−27.
    [30]
    肖 武,陈文琦,何厅厅,等. 高潜水位煤矿区开采扰动的长时序过程遥感监测与影响评价[J]. 煤炭学报,2022,47(2):922−933.

    XIAO Wu,CHEN Wenqi,HE Tingting,et al. Remote sensing monitoring and impact assessment of mining disturbance in mining area with high undergroundwater level[J]. Journal of China Coal Society,2022,47(2):922−933.
    [31]
    LI Jun,QIN Tingting,ZHANG Chengye,et al. A new method for quantitative analysis of driving factors for vegetation cov-erage change in mining areas:GWDF-ANN[J]. Remote Sensing,2022,14(7):1579. doi: 10.3390/rs14071579
    [32]
    李全生. 蒙东草原区大型露天煤矿减损开采与生态修复关键技术[J]. 采矿与安全工程学报,2023,40(5):1−15.

    LI Quansheng. Key technologies for damage reduction mining and ecological restoration of large-scale open pit coal mines in grassland area of eastern inner mongolia[J]. Journal of Mining & Safety Engineering,2023,40(5):1−15.
    [33]
    LILLESAND Thomas,KIEFER Ralph W,and CHIPMAN Jonathan. Remote sensing and image interpretation[M]. John Wiley & Sons,2015:150-194.
    [34]
    孙 群,温伯威,陈 欣. 多源地理空间数据一致性处理研究进展[J]. 测绘学报,2022,51(7):1561−1574.

    SUN Qun,WEN Bowei,CHEN Xin. Research on consistency processing of multi-source geospatial data[J]. Acta Geodaetica et Cartographica Sinica,2022,51(7):1561−1574.
    [35]
    SANG Xiao,LI Jun,ZHANG Chengye,et al. Downscaling microwave soil moisture products with SM-RDNet for semiarid mining areas[J]. Water,2022,14(11):1792. doi: 10.3390/w14111792
    [36]
    梁顺林,李小文,王锦地. 定量遥感 :理念与算法[M]. 北京:科学出版社,2013:25-29.
    [37]
    WEN Song,WEI Song,GU Haihong,et al. Progress in the re-mote sensing monitoring of the ecological environment in mining areas[J]. International Journal of Environmental Re-Search and Public Health,2020,17(6):1846. doi: 10.3390/ijerph17061846
    [38]
    李 军,张艺藂,张彩月等. 基于LandTrendr和CCDC算法的神东煤炭基地植被损毁识别对比分析[J]. 金属矿山,2023,52(1):55−64.

    LI Jun,ZHANG Yicong,ZHANG Caiyue,et al. Applicability analysis of Landtrendr and CCDC algorithms for vegetation damage identification in Shendong coal base[J]. Metal Mine,2023,52(1):55−64.
    [39]
    包妮沙,李秋玥,杨天鸿,等. 耦合多因子的地表生态状况指数在干旱半干旱区露天矿的应用效果评价[J]. 金属矿山,2023,52(1):40−54.

    BAO Nisha,LI Qiuyue,YANG Tianhong,et al. Evaluation of the application effects of land surface ecological status indices based on lntegrated multi-factor in open-pit mines in arid and semi-arid areas[J]. Metal Mine,2023,52(1):40−54.
    [40]
    LI Deqing,MEI Honghui,SHEN Yi,et al. ECharts:a declarative framework for rapid construction of web-based visualization[J]. Visual Informatics,2018,2(2):136−146. doi: 10.1016/j.visinf.2018.04.011
    [41]
    李苗苗,吴炳方,颜长珍等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学,2004,28(4):153−159.

    LI Miaomiao,WU Bingfang,YAN Changzhen,et al. Estimation of vegetation fraction in the upper basin of miyun reservoir by remote sensing[J]. Resources Science,2004,28(4):153−159.
    [42]
    CHEN Yang,CAO Ruyin,CHEN Jin,et al. A practical approach to reconstruct high-quality Landsat NDVI time-series data by gap filling and the Savitzky–Golay filter[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2021,180:174−190. doi: 10.1016/j.isprsjprs.2021.08.015
    [43]
    覃志豪,ZHANG Minghua,ARNON Karnieli等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报,2001,55(4):456−466.

    QIN Zhihao,ZHANG Minghua,ARNON Karnieli,et al. Mono-window algorithm for retrieving land surface temperature from landsat TM6 data[J]. Acta Geographica Sinica,2001,55(4):456−466.
    [44]
    朱云芳,朱 利,李家国,等. 基于GF-1 WFV影像和BP神经网络的太湖叶绿素a反演[J]. 环境科学学报,2017,37(1):130−137.

    ZHU Yunfang,ZHU Li,LI Jiaguo,et al. The study of inversion of chlorophyll a in Taihu based on GF-1 WFV image and BP neural network[J]. Acta Scientiae Circumstantiae,2017,37(1):130−137.
    [45]
    CHEN Liangchieh,ZHU Yukun,PAPANDREOU George,et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// In Proceedings of the European conference on computer vision (ECCV),2018:833−851.
    [46]
    DU Shouhang,XING Jianghe,LI Jun,et al. Open-Pit mine extraction from very high-resolution remote sensing images using OM-DeepLab[J]. Natural Resources Research,2022,31(6):3173−3194. doi: 10.1007/s11053-022-10114-y
    [47]
    RONNEBERGER Olaf,FISCHER Philipp,and BROX Thomas. U-net:Convolutional networks for biomedical image segmentation[C]// In Medical Image Computing and Computer-Assisted Intervention:Springer,2015:234-241.
    [48]
    ZHAO Hengshuang,SHI Jianping,QI Xiaojuan,et al. Pyramid scene parsing network[C]// In Proceedings of the IEEE conference on computer vision and pattern recognition,2017:2881-2890.
    [49]
    HE Kaiming,GKIOXARI Georgia,DOLLÁR Piotr,et al. Mask r-cnn[C]// In Proceedings of the IEEE international conference on computer vision,2017:2961-2969.
    [50]
    ZHU Dongjun,XIA Shixiong,ZHAO Jiaqi,et al. Diverse sample generation with multi-branch conditional generative adversarial network for remote sensing objects detection[J]. Neurocomputing,2020,381:40−51. doi: 10.1016/j.neucom.2019.10.065
    [51]
    DU Shouhang,LI Wei,LI Jun,et al. Open-pit mine change detection from high resolution remote sensing images using DA-UNet++ and object-based approach[J]. International Journal of Mining,Reclamation and Environment,2022,36(7):512−535. doi: 10.1080/17480930.2022.2072102
    [52]
    FU Gang,LIU Changjun,ZHOU Rong,et al. Classification for high resolution remote sensing imagery using a fully convolutional network[J]. Remote Sensing,2017,9(5):498. doi: 10.3390/rs9050498
    [53]
    SUN Yuanheng,LI Jun,ZHANG Chengye,et al. Environment monitoring of mining area with comprehensive mining ecological index (CMEI):a case study in Xilinhot of Inner Mongolia,China[J]. International Journal of Sustainable Development & World Ecology,2023,30(7):814−825.
    [54]
    NIE Xinran,HU Zhenqi,RUAN Mengying,et al. Remote-sensing evaluation and temporal and spatial change detection of ecological environment quality in coal-mining areas[J]. Remote Sensing,2022,14(2):345. doi: 10.3390/rs14020345
    [55]
    TD/T 1036-2013,土地复垦质量控制标准[S].中华人民共和国国土资源部.
    [56]
    GB 3838-2002,地表水环境质量标准 [S]. 中华人民共和国生态环境部.
    [57]
    WANG Guofa,XU Yongxiang,REN Huaiwei. Intelligent and ecological coal mining as well as clean utiliza-tion technolo-gy in China:Review and prospects.[J]. International Journal of Mining Science and Technology,2019,29(2):161−169. doi: 10.1016/j.ijmst.2018.06.005

Catalog

    Article views (248) PDF downloads (89) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return