Citation: | LI Huiting,CHANG Suoliang,ZHANG Sheng,et al. Evaluation of coal seam roof water-bearing risk area via anisotropic high-resolution seismic processing[J]. Coal Science and Technology,2024,52(S1):192−200. DOI: 10.12438/cst.2023-0376 |
With the increasing importance of mine water prevention and control in coal mining, higher requirements have been put forward for precise seismic exploration methods. Conventional seismic exploration based on isotropy is increasingly unable to meet the high-precision exploration requirements for coal seams and their roof and floor under complex conditions. Based on the orthogonal anisotropy characteristics of coal bearing strata, the periodic thin interlayer anisotropy and fracture induced anisotropy are comprehensively considered. A wide-angle imaging method based on high-order motion correction is proposed to flatten the in-phase axis and improve the accuracy of far and near offset motion correction for the characteristics of the transverse isoropy medium with vertical symmetry axis(VTI). Applying the Offset Vector Tile(OVT) domain processing to eliminate anisotropy in different directions under structural fractures in coal bearing strata, in response to the characteristics of the transverse isoropy with horizontal axis ofs symmetry medium(HTI). Improve imaging accuracy and resolution during seismic data processing. Improve imaging accuracy and resolution during the seismic data processing phase. On the basis of wide azimuth and high fidelity imaging, lithology interpretation is based on the pseudo acoustic method of rock physical characteristics. By reconstructing the acoustic time difference logging curve and incorporating formation lithology information into the velocity curve, the spatial distribution characteristics of formation lithology can be analyzed through inversion iteration. Fracture interpretation is based on ellipse fitting of azimuth offset information contained in OVT gathers to obtain attenuation gradient of seismic wave in different azimuth, and fracture density and azimuth are fitted to obtain distribution characteristics of formation fracture density. To achieve precise exploration of the two key parameters affecting mine flooding, the coal seam roof aquifer and the water conducting fracture zone. On this basis, a comprehensive evaluation is conducted on the water production risk zone of the coal seam roof. The actual water content risk assessment of the data is in good agreement with the production well situation. The method was applied to the research area, and the actual data of water content risk assessment matched well with the production well situation. The results verified the feasibility and applicability of the proposed risk assessment method, providing useful reference for predicting mine flood risk areas in coal mining.
[1] |
董书宁. 对中国煤矿水害频发的几个关键科学问题的探讨[J]. 煤炭学报,2010,35(1):66−71.
DONG Shuning. Some key scientific problems on water hazards frequently happened in China’s coal mines[J]. Journal of China Coal Society,2010,35(1):66−71.
|
[2] |
李新凤. 砂岩含水层富水性预测及水害危险性评价研究[D]. 青岛:山东科技大学,2010.
LI Xinfeng. Water abundance forecast and water disaster danger evaluation study of sandstone aquifers[D]. Qingdao:Shangdong University of Science and Technology,2010.
|
[3] |
常锁亮,张生,刘晶,等. 薄互层条件下围岩变化对煤层反射波的影响研究[J]. 煤田地质与勘探,2021,49(5):220−229.
CHANG Suoliang,ZHANG Sheng,LIU Jing,et al. Influence of surrounding rock changes on the coal seam reflected wave under thin interbed condition[J]. Coal Geology & Exploration,2021,49(5):220−229.
|
[4] |
张生,黄捍东,王星星,等. 车西洼陷西北陡坡沙三下亚段地震相控反演砂砾岩储层预测[J]. 地学前缘,2018,25(2):210−220.
ZHANG Sheng,HUANG Handong,WANG Xingxing,et al. Prediction of sand-conglomerate reservoirs via seismic facies controlled inversion in the Lower Es-3 of the northern steep slope of the Chexi Sag[J]. Earth Science Frontiers,2018,25(2):210−220.
|
[5] |
ZHANG S,HUANG H,DONG Y,et al. Direct estimation of the fluid properties and brittleness via elastic impedance inversion for predicting sweet spots and the fracturing area in the unconventional reservoir[J]. Journal of Natural Gas Science and Engineering,2017,45:415−427. doi: 10.1016/j.jngse.2017.04.028
|
[6] |
叶红星. 基于地震属性分析的红柳林煤矿采空区解释[J]. 煤田地质与勘探,2014,42(3):87−91. doi: 10.3969/j.issn.1001-1986.2014.03.020
YE Hongxing. The interpretation of the gob based on the analysis of seismic attribute in Hongliulin coal mine[J]. Coal Geology & Exploration,2014,42(3):87−91. doi: 10.3969/j.issn.1001-1986.2014.03.020
|
[7] |
唐汉平. 复杂地震地质条件下煤矿采空区三维地震勘探技术[J]. 中国煤炭,2013,39(12):35−37,87. doi: 10.3969/j.issn.1006-530X.2013.12.010
TANG Hanping. 3D seismic prospecting technology in coal mine gob area with complex seismic geology[J]. China Coal,2013,39(12):35−37,87. doi: 10.3969/j.issn.1006-530X.2013.12.010
|
[8] |
卫红学,查文锋,冯春龙. 采空区上地震时间剖面的特征分析[J]. 地球物理学进展,2014,29(4):1808−1814. doi: 10.6038/pg20140443
WEI Hongxue,CHA Wenfeng,FENG Chunlong. Analysis of characteristics of seismic section in goaf area[J]. Progress in Geophysics,2014,29(4):1808−1814. doi: 10.6038/pg20140443
|
[9] |
郭文峰,曹志勇,卫红学,等. 塌陷采空区的正演模拟及波场分析[J]. 地球物理学进展,2015,30(2):847−852. doi: 10.6038/pg20150249
GOU Wenfeng,CAO Zhiyong,WEI Hongxue,et al. The forward modeling and the analysis of wave field in the collapse of gob area[J]. Progress in Geophysics,2015,30(2):847−852. doi: 10.6038/pg20150249
|
[10] |
杨德义,王贇,王辉. 陷落柱的绕射波[J]. 石油物探,2000(4):82−86. doi: 10.3969/j.issn.1000-1441.2000.04.011
YANG Deyi,WANG Yun,WANG Hui. Difraction waves from fallen pillars[J]. Geophysical Prospecting for Petroleum,2000(4):82−86. doi: 10.3969/j.issn.1000-1441.2000.04.011
|
[11] |
ZHANG X X,MA J F,LI L. Monitoring of coal-mine goaf based on 4D seismic technology[J]. Applied Geophysics,2020,17(1):54−66. doi: 10.1007/s11770-020-0807-9
|
[12] |
李冬,杜文凤. 四维地球物理技术在煤炭开采影响分析中的应用[J]. 地质论评,2017,63(S1):341−342.
LI Dong,DU Wenfeng. Application of 4D geophysical technology in coal mining[J]. Geological Review,2017,63(S1):341−342.
|
[13] |
苑昊,刘佳朋,姜在兴. 煤矿采空区四维地震特征分析及识别方法:以淮南煤田张集矿区为例[J]. 现代地质,2021,35(4):1018−1023.
YUAN Hao,LIU Jiapeng,JIANG Zaixing. 4D seismic characteristics in coal mine gobs:a case study from the Zhangji coal mine in Huainan coalfield[J]. Geoscience,2021,35(4):1018−1023.
|
[14] |
侯恩科,袁峰,王双明,等. 导水裂隙带发育特征地震识别方法[J]. 煤炭学报,2023,48(1):414−429.
HUO Enke,YUAN Feng,WANG Shuangming,et al. Seismic identification and development characteristics of water conducting fissure zong in goaf[J]. Journal of China Coal Society,2023,48(1):414−429.
|
[15] |
姜鸿莺,陈刚,程晨. 各向异性速度分析技术在VTI介质地震资料处理中的应用:以南川地区为例[C]//中国地质学会2015学术年会论文摘要汇编(下册). 中国地质学会,2015,9:811−819.
JIANG Hongying,CHEN Gang,CHENG Chen. Application of anisotropic velocity analysis technology in seismic data processing of VTI medium:A case study of Nanchuan area[C]//Abstract compilation of the 2015 Annual Conference of the Geological Society of China (Volume II). Geological Society of China,2015,9:811−819.
|
[16] |
付强,罗彩明. 基于VTI介质理论的P波速度分析和动校正[J]. 物探化探计算技术,2008(1):10−16,88. doi: 10.3969/j.issn.1001-1749.2008.01.003
FU Qiang,LUO Caiming. P-wave velocity analysis and dynamic correction based on VTI media theory[J]. Computing Techniques for Geophysical and Geochemical Exploration,2008(1):10−16,88. doi: 10.3969/j.issn.1001-1749.2008.01.003
|
[17] |
李勤,王玮,马随波,等. HTI煤层方位AVO响应与裂隙识别[J]. 地球物理学进展,2021,36(1):178−186. doi: 10.6038/pg2021DD0358
LI Qin,WANG Wei,MA Suibo,et al. Analysis of azimuthal AVO response and crack identification on HTI tectonic coal[J]. Progress in Geophysics,2021,36(1):178−186. doi: 10.6038/pg2021DD0358
|
[18] |
ANDREAS R. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry[J]. Geophysics,1997,DOI: 10.1190/1.1444181.
|
[19] |
RUGER A. Variation of P-wave reflectivity with offset and azimuth in anisotropic media[J]. Geophysics,1998,63(3):935−947. doi: 10.1190/1.1444405
|
[20] |
霍国栋,杨荣荣,司国帅,等. 叠后拟声波反演及门槛值确定方法[C]//中国石油学会2019年物探技术研讨会论文集. 2019:562−564.
HUO Guodong,YANG Rongrong,SI Guoshuai,et al. Post-stack onomatopoeia inversion and threshold value determination method[C]//Proceedings of the 2019 Geophysical Prospecting Technology Symposium of the Chinese Petroleum Society. 2019:562−564.
|
[21] |
魏文希,师素珍,孙超,等. 拟声波反演技术在识别煤层顶底板砂泥岩中的应用[J]. 物探与化探,2016,40(1):220−224.
WEI Wenxi,SHI Suzhen,SUN Chao,et al. Application of pseudo-acoustic inversion technique in identifying sandstone and mudstone of coal seam roof and floor[J]. Geophysical and Geochemical Exploration,2016,40(1):220−224.
|
[22] |
赵继龙,熊冉,陈戈,等. 伽马拟声波分频重构反演在储层预测中的应用[J]. 地球物理学进展,2013,28(4):1954−1961. doi: 10.6038/pg20130438
ZHAO Jilong,XIONG Ran,CHEN Ge,et al. Gr Quasi-Acoustic frequency divisions reconstruct seismic inversion and application in reservoir prediction[J]. Progress in Geophysics,2013,28(4):1954−1961. doi: 10.6038/pg20130438
|
[23] |
闫家伟,王文庆,吕芳芳,等. 复杂碳酸盐岩储层多数据融合预测技术:以千米桥潜山奥陶系为例[J]. 石油地球物理勘探,2021,56(3):583−592,415.
YAN Jiawei,WANG Wenqing,LYU Fangfang,et al. Fusion of multiple data for predicting complex carbonate reservoirs and its application:a case study on Ordovician of Qianmiqiao buried hills[J]. Oil Geophysical Prospecting,2021,56(3):583−592,415.
|
[24] |
印兴耀,张洪学,宗兆云. OVT数据域五维地震资料解释技术研究现状与进展[J]. 石油物探,2018,57(2):155−178. doi: 10.3969/j.issn.1000-1441.2018.02.001
YING Xingyao,ZHANG Hongxue,ZONG Zhaoyun. Research status and progress of 5D seismic data interpretation in OVT domain[J]. Geophysical Prospecting for Petroleum,2018,57(2):155−178. doi: 10.3969/j.issn.1000-1441.2018.02.001
|
[25] |
VERMEER G J O. Creating image gathers in the absence of proper common-offset gathers[J]. Exploration Geophysics,1998,29(4):636−642.
|
[26] |
詹仕凡,陈茂山,李磊,等. OVT域宽方位叠前地震属性分析方法[J]. 石油地球物理勘探,2015,50(5):956−966,806.
ZHAN Shifan,CHEN Maoshan,LI Lei,et al. OVT-domain wide-azimuth prestack seismic attribute analysis[J]. Oil Geophysical Prospecting,2015,50(5):956−966,806.
|
[27] |
王霞,李丰,张延庆,等. 五维地震数据规则化及其在裂缝表征中的应用[J]. 石油地球物理勘探,2019,54(4):844−852,725.
WANG Xia,LI Feng,ZHANG Yanqing,et al. 5D seismic data regularization and application in fracture characterization[J]. Oil Geophysical Prospecting,2019,54(4):844−852,725.
|
[28] |
康希栋. 沁水煤田町店勘探区太原组K2-K4灰岩段沉积环境[J]. 华北地质矿产杂志,1994(3):293−297.
KANG Xidong. Sedimentary environment of K2-K4 limestone member of Taiyuan formation in southeast Qinshui coalfield[J]. North China Geology,1994(3):293−297.
|
[29] |
马骥,蔺成森,王青振. 高家堡矿井煤层顶板原生裂缝带分布[J]. 山东煤炭科技,2021,39(10):200−202,211,218. doi: 10.3969/j.issn.1005-2801.2021.10.067
MA Ji,LIN Chengsen,WANG Qingzhen. Distribution of primary fracture zone in coal seam roof of Gaojiapu mine[J]. Shandong Coal Science and Technology,2021,39(10):200−202,211,218. doi: 10.3969/j.issn.1005-2801.2021.10.067
|