Advance Search
YAO Hui,YIN Huichao,YIN Shangxian,et al. Developing of the evaluation of water inrush risk from coal seam floor[J]. Coal Science and Technology,2024,52(S1):183−191. DOI: 10.12438/cst.2023-0346
Citation: YAO Hui,YIN Huichao,YIN Shangxian,et al. Developing of the evaluation of water inrush risk from coal seam floor[J]. Coal Science and Technology,2024,52(S1):183−191. DOI: 10.12438/cst.2023-0346

Developing of the evaluation of water inrush risk from coal seam floor

Funds: 

National Natural Science Foundation of China (51774136,51974126)

More Information
  • Received Date: March 01, 2023
  • Available Online: February 28, 2024
  • Reviews the development process of the evaluation of water inrush risk from coal seam floor. Then the system of risk evaluation is put forward: indexes (establishment of index system), methods (selection of evaluation methods) and tools (innovation of handling tools), and the three steps are summarized. The study indicates that the development of index system is no longer the expansion of factor sets, but the treatment of non-linear relationship among factors, as well as the simplification of the two basic factor sets: mining and geological conditions. The existing methods are divided into three categories according to the logic of data processing. Based on the basic information of the data, the first type is to consider, sort, and synthesize three effects of the original data on the evaluated object: size, height, advantages and disadvantages, thus forming the evaluation result. The second type includes assessment, analysis, expansion and extension of the data, then the potential information is discovered to form the final result. The third type is to organize data sets with the same indexes, and find common information among data through related processing technology to obtain the result. The development direction of future evaluation methods covers two aspects. On the one hand, it aims to inherit the water inrush coefficient method and improve its poor performance in thick, extremely thick, and extremely thin water-resisting layers. On the other hand, it aims to innovate new methods of machine learning, then develop and apply them and their combined models. Besides,three goals that the processing tool needs to achieve are proposed:build a three-dimensional model of a mine,the realization of dynamic demonstration,positioning,quantitation and probability.The problems faced by the three parts are discussed and specific solutions are elaborated.On the basis of the above,the research prospect of all links of water inrush risk evoluation system from coal seam is globally clarified.

  • [1]
    中煤科工集团西安研究院有限公司. 中煤科工集团西安研究院有限公司志[M]. 北京:煤炭工业出版社,2016.
    [2]
    国家安全生产监督管理总局. 煤矿安全规程[M]. 北京:煤炭工 业出版社,2011.
    [3]
    国家煤矿安全监察局. 煤矿防治水细则[M]. 北京:煤炭工业出版社,2018.
    [4]
    潘元伯. 关于斯列萨列夫安全水头公式的推导[J]. 合肥工业大学学报(自然科学版),1986,8(1):99−103.

    PAN Yuanbo. Derivation of Slesarev safe head formula[J]. Journal of Hefei Polytechnic university (Natural Science Edition),1986,8(1):99−103.
    [5]
    刘其声. 关于突水系数的讨论[J]. 煤田地质与勘探,2009,37(4):34−37,42.

    LIU Qisheng. A discussion on water inrush coefficient[J]. Coal Geology & Exploration,2009,37(4):34−37,42.
    [6]
    孙亚军,郑世书,张大顺,等. 信息拟合方法在焦作东部矿区底板突水预测中的初步应用[J]. 中州煤炭,1990(2):24−26.

    SUN Yajun,ZHENG Shishu,ZHANG Dashun,et al. Preliminary application of information fitting method in prediction of water inrush from floor in eastern Jiaozuo mining area[J]. Zhongzhou Coal,1990(2):24−26.
    [7]
    武 强,解淑寒,裴振江,等. 煤层底板突水评价的新型实用方法Ⅲ-基于GIS的ANN型脆弱性指数法应用[J]. 煤炭学报,2007,32(12):1301−1306.

    WU Qiang,XIE Shuhan,PEI Zhenjiang,et al. A new practical methodology of the coal floor water bursting evaluating Ⅲ:the application of ANN vulnerable index method based on GIS[J]. Journal of China Coal Society,2007,32(12):1301−1306.
    [8]
    李忠建,魏久传,郭建斌,等. 运用突水系数法和模糊聚类法综合评价煤层底板突水危险性[J]. 矿业安全与环保,2010,37(1):24−26,90.

    LI Zhongjian,WEI Jiuchuan,GUO Jianbin,et al. Evaluating the water inrush risk of coal floor based on the water floor coefficient method and fuzzy clustering method[J]. Mining Safety & Environmental Protection,2010,37(1):24−26,90.
    [9]
    刘 磊,于小鸽,王丹丹,等. 基于灰色理论的底板突水危险性评价[J]. 矿业安全与环保,2016,43(5):45−49.

    LIU Lei,YU Xiaoge,WANG Dandan,et al. Risk evaluation of mine floor water inrush based on grey theory[J]. Mining Safety & Environmental Protection,2016,43(5):45−49.
    [10]
    尹尚先,连会青,徐 斌,等. 深部带压开采:传承与创新[J]. 煤田地质与勘探,2021,49(1):170−181.

    YIN Shangxian,LIAN Huiqing,XU Bin,et al. Deep mining under safe water pressure of aquifer:Inheritance and innovation[J]. Coal Geology & Exploration,2021,49(1):170−181.
    [11]
    左人宇,龚晓南,桂和荣. 多因素影响下煤层底板变形破坏规律研究[J]. 东北煤炭技术,1999(5):3−7.

    ZUO Renyu,GONG Xiaonan,GUI Herong. Research of the coal seam floor’s stranin and fracture regularity influenced by several facts[J]. Coal Technology of Northeast China,1999(5):3−7.
    [12]
    武 强,张志龙,马积福. 煤层底板突水评价的新型实用方法Ⅰ-主控指标体系的建设[J]. 煤炭学报,2007,32(1):42−47. doi: 10.3321/j.issn:0253-9993.2007.01.009

    WU Qiang,ZHANG Zhilong,MA Jifu. A new practical methodology of the coal floor water bursting evaluating Ⅰ-The master controlling index system construc-tion[J]. Journal of China Coal Society,2007,32(1):42−47. doi: 10.3321/j.issn:0253-9993.2007.01.009
    [13]
    尹尚先,徐 维,尹慧超,等. 深部开采底板厚隔水层突水危险性评价方法研究[J]. 煤炭科学技术,2020,48(1):83−89.

    YIN Shangxian,XU Wei,YIN Huichao,et al. Study on risk assessment method of water inrush from thick floor aquifuge in deep mining[J]. Coal Science and Technology,2020,48(1):83−89.
    [14]
    陈红影. 我国矿井水害的类型划分与水文结构模式研究[D]. 徐州:中国矿业大学,2019.

    CHEN Hongying. Study on the type classification and hydrological structure model of mine water hazards in China[D]. Xuzhou:China University of Mining & Technology,2019.
    [15]
    靳德武,董书宁,刘其声. 带(水)压开采安全评价技术及其发展方向[J]. 煤田地质与勘探,2005,33(S1):21−24.

    JIN Dewu,DONG Shuning,LIU Qisheng. Safety evaluation technique and development tendency of safety mining above confined aquifer[J]. Coal Geology & Exploration,2005,33(S1):21−24.
    [16]
    李志强. 基于五图—双系数法与脆弱性指数法的煤矿底板突水预测研究[D]. 焦作:河南理工大学,2017.

    LI Zhiqiang. Study on water bursting prediction of coal mine floor based on Five Graph-Double Coefficient method and Vulnerability Index method[D]. Jiaozuo:Henan Polytechnic University,2017.
    [17]
    武 强,张 波,赵文德,等. 煤层底板突水评价的新型实用方法Ⅴ:基于GIS的ANN型、证据权型、Logistic回归型脆弱性指数法的比较[J]. 煤炭学报,2013,38(1):21−26.

    WU Qiang,ZHANG Bo,ZHAO Wende,et al. A new practical methodology of coal seam floor water burst evaluation:the comparison study among ANN,the weight of evidence and the logistic regression vulnerable index method based on GIS[J]. Journal of China Coal Society,2013,38(1):21−26.
    [18]
    赵云平,施龙青,丛培章,等. 灰色关联度-DTOPSIS法在煤矿事故分析中的应用[J]. 山东煤炭科技,2016(7):186−188,190.

    ZHAO Yunping,SHI Longqing,CONG Peizhang,et al. Application of grey correlation degree-DTOPSIS method in coal mine accidents analysis[J]. Shandong Coal Science and Technology,2016(7):186−188,190.
    [19]
    张科学,亢磊,何满潮,等. 矿井煤层冲击危险性多层次综合评价研究[J]. 煤炭科学技术,2020,48(8):82−89.

    ZHANG Kexue,KANG Lei,HE Manchao,et al. Research on multi-level comprehensive evaluation of coal seam rockburst risk in underground mine[J]Coal Science and Technology,2020,48(8):82−89.
    [20]
    姚 辉,尹尚先,徐 维,等. 基于组合赋权的加权秩和比法的底板突水危险性评价[J]. 煤田地质与勘探,2022,50(6):132−137.

    YAO Hui,YIN Shangxian,XU Wei,et al. Risk assessment of floor water inrush by weighted rank sum ratio based on combination weighting[J]. Coal Geology & Exploration,2022,50(6):132−137.
    [21]
    刘思峰. 灰色系统理论及其应用[M]. 北京:科学出版社,2018.

    LIU Sifeng. Grey system theory and its application[M]. Beijing:Science Press,2018.
    [22]
    尹尚先,王 屹,尹慧超,等. 深部底板奥灰薄灰突水机理及全时空防治技术[J]. 煤炭学报,2020,45(5):1855−1864.

    YIN Shangxian,WANG Yi,YIN Huichao,et al. Mechanism and full-time-space prevention and control technology of water inrush from Ordovician and thin limestone in deep mines[J]. Journal of China Coal Society,2020,45(5):1855−1864.
    [23]
    国家煤矿安全监察局. 煤矿防治水规定[M]. 北京:煤炭工业出版社,2009.

    The State Administration of Work Safety. Regulations for water prevention and control in coal mines[M]. Beijing:China Coal Industry Publishing House,2009.
    [24]
    邵良杉,李相辰. 基于MIV-PSO-SVM 模型的矿井突水水源识别[J]. 煤炭科学技术,2018,46(8):183−190.

    SHAO Liangshan,LI Xiangchen. Indentification of mine water inrush source based on MIV-PSO-SVM[J]. Coal Science and Technology,2018,46(8):183−190.
    [25]
    袁 峰,申 涛,谢晓深,等. 基于深度学习的地震多属性融合技术在导水裂隙带探测中的应用[J]. 煤炭学报,2021,46(10):3234−3244.

    YUAN Feng,SHEN Tao,XIE Xiaoshen,et al. Application of deep learning-based seismic multi-attribute fusion technology in the detection of water conducting fissure zone[J]. Journal of China Coal Society,2021,46(10):3234−3244.
    [26]
    施龙青,张荣遨,徐东晶,等. 基于 GWO-Elman 神经网络的底板突水预测[J]. 煤炭学报,2020,45(7):2455−2463.

    SHI Longqing,ZHANG Rongao,XU Dongjing,et al. Prediction of water inrush from floor based on GWO-Elman neural network[J]. Journal of China Coal Society,2020,45(7):2455−2463.
    [27]
    董东林,陈昱吟,倪林根,等. 基于WOA-ELM算法的矿井突水水源快速判别模型[J]. 煤炭学报,2021,46(3):984−993.

    DONG Donglin,CHEN Yuyin,NI Lingen,et al. Fast discriminant model of mine water inrush source based on WOA-ELM algorithm[J]. Journal of China Coal Society,2021,46(3):984−993.
    [28]
    王 鹏,朱希安,王占刚,等. 基于改进萤火虫算法的矿井水害避灾路径规划[J]. 中国矿业,2021,30(6):106−111.

    WANG Peng,ZHU Xi’an,WANG Zhangang,et al. Disaster avoidance path planning for mine floor based on improved firefly algorithm[J]. China Mining Maga-zine,2021,30(6):106−111.
    [29]
    赵铭生,刘守强,纪润清,等. 基于遗传算法优化BP神经网络的华北型煤田矿压破坏带深度预测[J]. 矿业研究与开发,2020,40(6):89−93.

    ZHAO Mingsheng,LIU Shouqiang,JI Runqing,et al. Depth prediction of mining pressure failure zone in North China coalfield based on BP neural network optimized by genetic algorithm[J]. Mining Research and Development,2020,40(6):89−93.
    [30]
    武 强. 我国矿井水防控与资源化利用的研究进展、问题和展望[J]. 煤炭学报,2014,39(5):795−805.

    WU Qiang. Progress,problems and prospects of prevention and control technology of mine water and reutilization in China[J]. Journal of China Coal Society,2014,39(5):795−805.
    [31]
    王国法,任怀伟,庞义辉,等. 煤矿智能化(初级阶段)技术体系研究与工程进展[J]. 煤炭科学技术,2020,48(7):1−27.

    WANG Guofa,REN Huaiwei,PANG Yihui,et al. Research and engineering process of intelligent coal mine technical system in early stages[J]. Coal Science and Technology,2020,48(7):1−27.
    [32]
    尹尚先,王玉国,李文生. 矿井水灾害:原因·对策·出路[J]. 煤田地质与勘探,2023,51(1):214−221.

    YIN Shangxian ,WANG Yuguo,LI Wensheng. Cause,countermeasures and solutions of water hazards in coal mines in China[J]. Coal Geology & Exploration,2023,51(1):214−221.
    [33]
    毛善君,马洪兵. 自动构建复杂地质体数字高程模型的方法研究[J]. 测绘学报,1999,28(1):59−63.

    MAO Shanjun,MA Hongbing. Method studying of digital elevation model of creating complicated geological entity automatically[J]. Acta Geodaetica et Cartographica Sinica,1999,28(1):59−63.
    [34]
    侯恩科,吴立新. 面向地质建模的三维体元拓扑数据模型研究[J]. 武汉大学学报(信息科学版),2002,27(5):467−472.

    HOU Enke,WU Lixin. An object-oriented three-dimensional topological data model based on component for geology modeling[J]. Geomatics and Infor-mation Science of Wuhan University,2002,27(5):467−472.
    [35]
    武强,徐华. 数字矿山中三维地质建模方法与应用. 中国科学:地球科学,2013,43:1996−2006.

    WU Qiang,XU Hua. Three-dimensional geological modeling and its application in digital mine. Science China:Earth Sciences,2013,doi: 10.1007/s11430-013-4671-9.
    [36]
    董书宁,刘再斌,程建远,等. 煤炭智能开采地质保障技术及展望[J]. 煤田地质与勘探,2021,49(1):21−31.

    DONG Shuning,LIU Zaibin,CHENG Jianyuan,et al. Technologies and prospect of geological guarantee for intelligent coal mining[J]. Coal Geology & Exploration,2021,49(1):21−31.
    [37]
    程建远,朱梦博,王云宏,等. 煤炭智能精准开采工作面地质模型梯级构建及其关键技术[J]. 煤炭学报,2019,44(8):2285−2295.

    CHENG Jianyuan,ZHU Mengbo,WANG Yunhong,et al. Cascade construction of geological model of longwall panel for intelligent precision coal mining and its key technology[J]. Journal of China Coal Society,2019,44(8):2285−2295.
    [38]
    程建远,刘文明,朱梦博,等. 智能开采透明工作面地质模型梯级优化试验研究[J]. 煤炭科学技术,2020,48(7):118−126.

    CHENG Jianyuan,LIU Wenming,ZHU Mengbo,et al. Experimental study on cascade optimization of geological models in intelligent mining transparency working face[J]. Coal Science and Technology,2020,48(7):118−126.
    [39]
    陈 健,盛 谦,陈国良,等. 岩土工程数字孪生技术研究进展[J]. 华中科技大学学报(自然科学版),2022,50(8):79−88.

    CHEN Jian,SHENG Qian,CHEN Guoliang,et al. Research process in digital tein technology for geotechnical engineering[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition),2022,50(8):79−88.
    [40]
    张长鲁. 基于数据挖掘的煤矿安全可视化管理研究[D]. 北京:中国矿业大学(北京),2015.

    ZHANG Changlu. Visual management of safety in cola mines based on data mining[D]. Beijing:China university of mining & technology,Beijing,2015.
    [41]
    王国法,刘 峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1−36.

    WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction (primary stage)[J]. Coal Science and Technology,2019,47(8):1−36.
    [42]
    彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345.

    PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345.
    [43]
    乔 伟,靳德武,王 皓,等. 基于云服务的煤矿水害监测大数据智能预警平台构建[J]. 煤炭学报,2020,45(7):2619−2627.

    QIAO Wei,JIN Dewu,WANG Hao,et al. Development of big data intelligent early warning platform for coal mine water hazard monitoring based on cloud service[J]. Journal of China Coal Society,2020,45(7):2619−2627.
    [44]
    YIN Huichao,WU Qiang,YIN Shangxian,et al. Predicting mine water inrush accidents based on water level anomalies of borehole groups using long short-term memory and isolation forest[J]. Journal of Hydrology,2023,616:128813. doi: 10.1016/j.jhydrol.2022.128813
    [45]
    侯恩科,严迎新,文强,等. 巷道掘进顶板突水危险性预测研究[J]. 煤炭科学技术,2022,50(10):110−120.

    HOU Enke,YAN Yingxin,WEN Qiang,et al. Study onprediction of water inrush hazard in roof of roadway driving[J]. Coal Science and Technology,2020,50(10):110−120.
    [46]
    陈建平,王春雷,王雪冬. 基于CNN神经网络的煤层底板突水预测[J]. 中国地质灾害与防治学报,2021,32(1):50−57.

    CHEN Jianping,WANG Chunlei,WANG Dongxue. Coal mine floor water inrush prediction based on CNN neural network[J]. The Chinese Journal of Geological Hazard and Control,2021,32(1):50−57.
    [47]
    查华胜,张海江,连会青,等. 潘二煤矿A组煤层底板灰岩水害微震监测[J]. 煤炭学报,2022,47(8):3001−3014.

    ZHA Huasheng,ZHANG Haijiang,LIAN Huiqing,et al. Microseismic monitoring on limestone water inrush at coal seam floor for group A coal layer of Pan’er Coal Mine[J]. Journal of China Coal Society,2022,47(8):3001−3014.
  • Cited by

    Periodical cited type(1)

    1. 朱磊,张潇文,张楠. 基于SLAM的矿井移动机器人定位算法. 金属矿山. 2025(05): 272-277 .

    Other cited types(0)

Catalog

    Article views (82) PDF downloads (32) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return