Citation: | QIAO Shichao,WANG Yi’nan,LYU Jiayang,et al. SC-XGBoost based soft measurement method for coal low heat value in power station[J]. Coal Science and Technology,2024,52(S1):332−340. DOI: 10.12438/cst.2023-0241 |
With the country vigorously promoting structural reform on the supply side of energy, the installed capacity of new energy sources has been rising and competition in the power market has become increasingly fierce. On the other hand, the complexity and volatility of the global coal market has led to a rise in the cost of power generation enterprises using coal as their energy source. Coal heat value is one of the most important evaluation criteria for coal quality and is also the most important basis for coal procurement. Accurate prediction of coal heat value can effectively control power plant operation and procurement costs. In order to achieve efficient prediction of the heat value of coal, the Pearson coefficients were used to select the characteristics of the variables of interest, the DBSCAN algorithm was used to de-noise
[1] |
侯方圆. 碳中和背景下的火电企业精益成本管理研究[D]. 广州中山大学,2021.
HOU Fangyuan. Research on lean cost management of thermal power enterprises under the background of carbon neutrality[D]. Guangzhou:Sun Yat-Sen University,2021.
|
[2] |
何 则,周彦楠,刘 毅. 2050年中国能源消费结构的系统动力学模拟:基于重点行业的转型情景[J]. 自然资源学报,2020,35(11):2696−2707. doi: 10.31497/zrzyxb.20201111
HE Ze,ZHOU Hongnan,LIU Yi. System dynamics simulation on China's energy consumption in 2050:Based on the policy scenarios of key industries[J]. Journal of Natural Resources,2020,35(11):2696−2707. doi: 10.31497/zrzyxb.20201111
|
[3] |
刘习文,彭卓寅,胡新强,等. 燃煤火电厂年度燃料成本最小化决策模型及应用[J]. 中国电力,2022,55(6):202−207.
LIU Xiwen,PENG Zhuoyin,HU Xinqiang,et al. Annual fuel cost minimization decision model for thermal power plant and its applications[J]. Electric Power,2022,55(6):202−207.
|
[4] |
成艳亭,宋立信,池 锋,等. 入炉煤质在线软测量技术研究与应用进展[J]. 洁净煤技术,2021,27(5):38−51.
CHENG Yanting,SONG Lixin,CHI Feng,et al. Development and application of soft-measurement technology for online monitoring of coal quality in power generation[J]. Clean Coal Technology,2021,27(5):38−51.
|
[5] |
韩立芳,赵中义. 基于极限学习机的燃煤热值预测研究[J]. 热力发电,2020,49(4):144−149.
HAN Lifang,ZHAO Zhongyi. Study on calorific value prediction of coal combustion based on extreme learning machine[J]. Thermal Power Generation,2020,49(4):144−149.
|
[6] |
李越胜,卢伟业,赵静波,等. 基于BP神经网络和激光诱导击穿光谱的燃煤热值快速测量方法研究[J]. 光谱学与光谱分析,2017,37(8):2575−2579.
LI Yuesheng,LU Weiye,ZHAO Jingbo,et al. Detection of caloric value of coal using laser-induced breakdown spectroscopy combined with BP neural networks[J]. Spectroscopy and Spectral Analysis,2017,37(8):2575−2579.
|
[7] |
杨明花,张克涵. 基于高光谱图像和卷积神经网络的燃煤热值估计算法[J]. 中国电力,2019,52(9):148−153.
YANG Minghua,ZHANG Kehan. Coal calorific value estimation algorithm based on hyperspectral image and convolutional neural network[J]. Electric Power,2019,52(9):148−153.
|
[8] |
FU C,ANANTHARAMAN R,JORDAL K,et al. Thermal efficiency of coal-fired power plants:From theoretical to practical assessments[J]. Energy Conversion and Management,2015,105:530−544. doi: 10.1016/j.enconman.2015.08.019
|
[9] |
GB/T 213—2008,煤的发热量测定方法[S]. 北京:质检出版社,2008.
|
[10] |
李光斌. 基于历史数据分析的神东煤发热量数据检验研究[J]. 煤炭科学技术,2022,50(S1):333−338.
LI Guangbin. Research on calorific value data inspection of Shendong coal based on historical data analysis[J]. Coal Science and Technology,2022,50(S1):333−338.
|
[11] |
宋宜猛. 基于工业分析预测煤质发热量研究[J]. 西安科技大学学报,2022,42(1):70−75.
SONG Yimeng. Research on prediction of coal calorific value based on proximate analysis[J]. Journal of Xi'an University of Science and Technology,2022,42(1):70−75.
|
[12] |
FARMER W J,RIX A J. Evaluating power system network inertia using spectral clustering to define local area stability[J]. International Journal of Electrical Power & Energy Systems,2022,134:107404.
|
[13] |
WANG Y,GAO S,CHU H,et al. Planning of electric taxi charging stations based on travel data characteristics[J]. Electronics,2021,10(16):1947. doi: 10.3390/electronics10161947
|
[14] |
LIU Hongli,CHEN Junchao,LI Ji,et al. Transformer fault warning based on spectral clustering and decision tree[J]. Electronics,2023,12(2):265. doi: 10.3390/electronics12020265
|
[15] |
梅 睿,吕志勇,顾 文,等. 基于主成分分析和谱聚类的短期风功率预测[J]. 现代电力,2023,40(1):35−41.
MEI Rui,LYU Zhiyong,GU Wen,et al. Short-term wind power prediction based on principal component analysis and spectral clustering[J]. Modern Electric Power,2023,40(1):35−41.
|
[16] |
CHEN T,GUESTRIN C. Xgboost:a scalable tree boosting system[C]//Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. New York,2016:785−794.
|
[17] |
ZHENG H,YUAN J,CHEN L. Short-term load forecasting using EMD-LSTM neural networks with a Xgboost algorithm for feature importance evaluation[J]. Energies,2017,10(8):1168. doi: 10.3390/en10081168
|
[18] |
陈振宇,刘金波,李 晨,等. 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J]. 电网技术,2020,44(2):614−620.
CHEN Zhenyu,LIU Jinbo,LI Chen,et al. Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J]. Power System Technology,2020,44(2):614−620.
|
[19] |
孔德婷,刘聪云,马琳鸽,等. 煤的工业分析仪器法测量不确定度评定[J]. 计量与测试技术,2022,49(1):108−111,114.
KONG Deting,LIU Congyun,MA Linge,et al. Evaluation of uncertainty on proximate analysis of coal of instrumental method[J]. Metrology & Measurement Technique,2022,49(1):108−111,114.
|
[20] |
丁皓轩,吴震坤,唐 文,等. 煤炭工业分析转化元素分析计算式改进与回归模型[J]. 洁净煤技术,2021,27(S2):170−174.
DING Haoxuan,WU Zhenkun,TANG Wen,et al. Calculation formula improvement and regression model for calculate ultimate analysis from proximate analysis of coal[J]. Clean Coal Technology,2021,27(S2):170−174.
|
[21] |
王惠新,陈致远,王永红,等. 贵州煤发热量与工业分析指标预测模型[J]. 洁净煤技术,2020,26(S1):112−115.
WANG Huixin,CHEN Zhiyuan,WANG Yonghong,et al. Prediction model of Guizhou coal calorific value and industrial analysis[J]. Clean Coal Technology,2020,26(S1):112−115.
|
[22] |
刘福国,刘 科. 求解高斯过程方程组预测煤元素含量研究[J]. 热力发电,2021,50(7):70−77.
LIU Fuguo,LIU Ke. Prediction of elemental composition of coal by solving Gaussian process equations[J]. Thermal Power Generation,2021,50(7):70−77.
|
[23] |
刘 超,张爱琳,李树刚,等. 基于Pearson特征选择的LSTM工作面瓦斯浓度预测模型及应用[J/OL]. 煤炭科学技术:1-9. doi: 10.13199/j.cnki.cst.2022−1618.
LIU Chao,ZHANG Ailin,LI Shugang,et al. LSTM-Pearson gas concentration prediction model feature selection and its application[J/OL]. Coal Science and Technology:1-9. doi: 10.13199/j.cnki.cst.2022−1618.
|
[24] |
赵先枝,陈军林. 基于分位数回归的煤炭发热量预测[J]. 工矿自动化,2022,48(7):130−134.
ZHAO Xianzhi,CHEN Junlin. Prediction method of coal calorific value based on quantile regression[J]. Journal of Mine Automation,2022,48(7):130−134.
|
[25] |
李大虎,李秋科,王文才,等. 基于MIV特征选择与PSO-BP神经网络的煤炭发热量预测[J]. 煤炭工程,2020,52(11):154−160.
LI Dahu,LI Qiuke,WANG Wencai,et al. Prediction of coal calorific value based on MIV characteristic variable selection and PSO-BP neural network[J]. Coal Engineering,2020,52(11):154−160.
|
[26] |
安吉振,陈 衡,乔世超,等. 基于K-means聚类算法的电站煤场来煤堆放优化研究[J]. 热力发电,2023,52(4):135−143.
AN Jizhen,CHEN Heng,QIAO Shichao,et al. Research on optimization of incoming coal stacking in power station coal yard based on K-means clustering algorithm[J]. Thermal Power Generation,2023,52(4):135−143.
|
[27] |
HU D,ZHOU K,LI F,et al. Electric vehicle user classification and value discovery based on charging big data[J]. Energy,2022,249:123698. doi: 10.1016/j.energy.2022.123698
|
[28] |
万 佳,胡大裟,蒋玉明. 多密度自适应确定DBSCAN算法参数的算法研究[J]. 计算机工程与应用,2022,58(2):78−85.
WAN Jia,HU Dasha,JIANG Yuming. Research on method of multi-density self-adaptive determination of DBSCAN algorithm parameters[J]. Computer Engineering and Applications,2022,58(2):78−85.
|
[29] |
黄 宇,高 珊,李其贤,等. SCR脱硝系统的分数阶PIλDμ参数优化控制[J]. 动力工程学报,2022,42(2):122−128.
HUANG Yu,GAO Shan,LI Qixian,et al. Optimal control of fractional PIλDμ parameters of SCR denitration system[J]. Journal of Chinese Society of Power Engineering,2022,42(2):122−128.
|
[1] | DONG Donglin, ZHANG Longqiang, ZHANG Enyu, FU Peiqi, CHEN Yuqi, LIN Xindong, LI Huizhe. A rapid identification model of mine water inrush based on PSO-XGBoost[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(7): 72-82. DOI: 10.13199/j.cnki.cst.2023-0446 |
[2] | DONG Lihong, SONG Weisi, FU Limei. Dynamic coal quantity measurement method based on binocular vision[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(8): 196-203. |
[3] | XU Yanfei, XU Chong, CHEN Yongchun, AN Shikai, BI Bo. Study on control technology of composite roof roadway in soft roof,soft coal and soft floor coal seam[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(11): 121-128. |
[4] | CHEN Changxing, LIU Jia, YE Shugang. Study and application on ground temperature measurement methods:taking Huainan Mining Area as an example[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(5). |
[5] | Zhu Hongqing Xin Miao Chang Mingran Liu Danlong, . Research progress on measuring technology of coal dielectric constant[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (9). |
[6] | XIA Hong-man WANG Jiong GUO Zhi-biao LIANG Jun-yi SUN Ping-yuan ZHOU Li-cai, . Constant resistance yielding support technology of mining gateway in seam with soft roof,soft coal and soft floor[J]. COAL SCIENCE AND TECHNOLOGY, 2015, (5). |
[7] | Design and Measuring Method on Measurement System of Shearer Posture Parameters[J]. COAL SCIENCE AND TECHNOLOGY, 2013, (8). |
[8] | Study on Geostress Measurement by Hydrallic Fracturing Method in Mine Soft Rock Roadway[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (12). |
[9] | Analysis on Measurement and Features of Deep Mine 3D Ground Stress Filed[J]. COAL SCIENCE AND TECHNOLOGY, 2012, (8). |
[10] | Study on Strata Affected to Electromagnetic with Drilling Measuring Signal[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (9). |