HU Binbin,ZHANG Xiaoyang,LI Kang,et al. Pore structure characteristics and full-scale characterization of coal reservoirs in the Laochang mining area[J]. Coal Science and Technology,2023,51(S2):165−174
. DOI: 10.12438/cst.2022-1743Citation: |
HU Binbin,ZHANG Xiaoyang,LI Kang,et al. Pore structure characteristics and full-scale characterization of coal reservoirs in the Laochang mining area[J]. Coal Science and Technology,2023,51(S2):165−174 . DOI: 10.12438/cst.2022-1743 |
Chinese coal reservoirs are characterized by “Three High and One Low”, and the pore structure of coal is an important factor affecting the permeability, the degree of drainage difficulty and the subsequent drainage mode. In order to accurately characterize the full scale pore size structure of coal, three methods of high pressure mercury injection, low temperature liquid nitrogen and carbon dioxide adsorption are used. Based on the compressibility correction of the high pressure mercury injection experimental data, combined with the fractal theory, the dominant pore size characterization sections of different experimental methods are analyzed, and the full scale joint characterization of 10 groups of coal samples in Yunnan Laochang mining area is realized. The results show that: The compression coefficient of coal matrix ranges from
[1] |
傅雪海,许行行,王 强,等. 煤层气异常成分的界定、分布及其成因研究进展[J]. 煤炭科学技术,2023,51(1):343−352.
FU Xuehai,XU Hanghang,WANG Qiang,et al. Review of research on definition, distribution and causes of abnormal coalbed methane composition[J]. Coal Science and Technology,2023,51(1):343−352.
|
[2] |
李 丹,苏现波. 煤与煤层气资源开发全过程阶段划分及其开发效果评价[J]. 煤炭科学技术,2023,51(3):137−147.
LI Dan,SU Xianbo. Stage division and development effect evaluation of whole process of coal and coalbed methane resources development[J]. Coal Science and Technology,2023,51(3):137−147.
|
[3] |
ZHANG Songhang,TANG Shuheng,ZHANG Jingping,et al. Pore structure characteristics of China sapropelic coal and their development influence factors[J]. Journal of Natural Gas Science and Engineering,2018,53:370−384. doi: 10.1016/j.jngse.2018.03.022
|
[4] |
ZHU Hongjian,JU Yiwen,LU Weidong,et al. The characteristics and evolution of micro-nano scale pores in shales and coals[J]. Journal of Nanoscience and Nanotechnology,2017,17(9):6124−6138. doi: 10.1166/jnn.2017.14529
|
[5] |
ZHANG Shasha,WU Caifang,LIU Huan,et al. Comprehensive characteristics of pore structure and factors influencing micropore development in the Laochang mining area,eastern Yunnan,China[J]. Journal of Petroleum Science and Engineering,2020,190:107090. doi: 10.1016/j.petrol.2020.107090
|
[6] |
SHI Xinghua,PAN Jienan,HOU Quanlin,et al. micrometer-scale fractures in coal related to coal rank based on micro-CT scanning and fractal theory[J]. Fuel,2018,212:162−172. doi: 10.1016/j.fuel.2017.09.115
|
[7] |
CAI Tingting,FENG Zengchao,ZHOU Dong. multi-scale characteristics of coal structure by x-ray computed tomography (x-ray CT),scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP)[J]. AIP Advances,2018,8(2):025324. doi: 10.1063/1.5021699
|
[8] |
郝晋伟,李 阳. 构造煤孔隙结构多尺度分形表征及影响因素研究[J]. 煤炭科学技术,2020,48(8):164−174.
HAO Jinwei,LI Yang. Research on multi-scale fractal characteristics of pore structure in tectonic coal and analysis of its influence factors[J]. Coal Science and Technology,2020,48(8):164−174.
|
[9] |
李腾飞,田 辉,陈 吉,等. 低压气体吸附法在页岩孔径表征中的应用:以渝东南地区页岩样品为例[J]. 天然气地球科学,2015,26(9):1719−1728.
LI Tengfei,TIAN Hui,CHEN Ji,et al. The application of low pressure gas adsorption to the characterization of pore size distribution for shales:An example from southeastern Chongqing area[J]. Natural Gas Geoscience,2015,26(9):1719−1728.
|
[10] |
卢杰林. 不同煤阶煤孔径结构特征及全孔径拼接表征[D]. 徐州:中国矿业大学,2021.
LU Jielin. Characteristics of pore structure and full aperture splicing of coal with different coal ranks[D]. Xuzhou:China University of Mining and Technology,2021.
|
[11] |
吴财芳,王 肖,刘小磊,等. 滇东老厂矿区多煤层条件下地应力特征及其影响研究[J]. 煤炭科学技术,2019,47(1):118−124.
WU Caifang,WANG Xiao,LIU Xiaolei,et al. Study on geostress features and influences under multi-seam condition in Laochang mining area of East Yunnan[J]. Coal Science and Technology,2019,47(1):118−124.
|
[12] |
邢亚楠,张松航,唐书恒,等. 滇东老厂矿区煤层气储层地应力特征研究[J]. 煤炭科学技术,2020,48(6):199−206.
XING Yanan,ZHANG Songhang,TANG Shuheng,et al. Study on in-situ stress characteristics of coalbed methane reservoir in Laochang mining area,eastern Yunnan[J]. Coal Science and Technology,2020,48(6):199−206.
|
[13] |
张莎莎. 煤层气合采层间干扰机理及干扰程度判识模型—以老厂矿区雨汪区块为例[D]. 徐州:中国矿业大学,2022.
ZHANG Shasha. Mechanism of interlayer interference and identification model of interference degree in CBM coproduction:A case study of Yuwang block in Laochang mining area[D]. Xuzhou:China University of Mining and Technology,2022.
|
[14] |
YAO Yanbin,LIU Dameng. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel,2012,95:152−158. doi: 10.1016/j.fuel.2011.12.039
|
[15] |
韩贝贝,秦 勇,张 政,等. 基于压汞试验的煤可压缩性研究及压缩量校正[J]. 煤炭科学技术,2015,43(3):68−72.
HAN Beibei,QIN Yong,ZHANG Zheng,et al. Study on coal compressibility and correction of compression amount based on compressibility of mercury injection test[J]. Coal Science and Technology,2015,43(3):68−72.
|
[16] |
张晓阳. 郑庄区块煤层气直井定量化排采制度优化模型[D]. 徐州:中国矿业大学,2018.
ZHANG Xiaoyang. Optimization model of quantitative drainage system for CBM vertical wells in Zhengzhuang block[D]. Xuzhou:China University of Mining and Technology,2018.
|
[17] |
LI Yonghua,LU Gaoqing,VICTOR Rudolph. Compressibility and fractal dimension of fine coal particles in relation to pore structure characterisation using mercury porosimetry[J]. Particle & Particle Systems Characterization,1999,16(1):25−31.
|
[18] |
GAI Yidong,LIU Dameng,YAO Yanbin,et al. Fractal characteristics of coal pores based on classic geometry and thermodynamics models[J]. Acta Geologica sinica,2011,85(5):1150−1162. doi: 10.1111/j.1755-6724.2011.00547.x
|
[19] |
宋 昱,姜 波,李凤丽,等. 低-中煤级构造煤纳米孔分形模型适用性及分形特征[J]. 地球科学,2018,43(5):1611−1622.
SONG Yu ,JIANG Bo,LI Fengli,et al. Applicability of fractal models and nanopores’ fractal characteristics for low-middle rank tectonic deformed coals[J]. Earth Science,2018,43(5):1611−1622.
|
[20] |
聂 雷. 煤中瓦斯吸附-解吸迟滞特征及其影响因素研究[D]. 徐州:中国矿业大学,2018.
NIE Lei. Study on characteristics and influencing factors of methane adsorption-desorption hysteresis[D]. Xuzhou:China University of Mining and Technology,2018.
|
[21] |
郑 丽. 页岩标准等温吸附曲线的建立和应用[D]. 成都:成都理工大学,2016.
ZHENG Li. Establishment and application of shale standard adsorption isotherm[D]. Chengdu:University of Technology,2016.
|
[22] |
李 鹏. 应用等温吸附曲线研究页岩孔隙结构特征[D]. 成都:成都理工大学,2016.
LI Peng. Applying adsotption isotherms to research characteristics of pore structure of shale[D]. Chengdu:University of Technology,2016.
|
[23] |
WANG Shufang,WANG dazhong,WANG yuman,et al. Sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale:a case study of the lower silurian longmaxi formation,Southern Sichuan Basin,China[J]. Journal of Natural Gas Science and Engineering,2016,28:691−699. doi: 10.1016/j.jngse.2015.11.045
|
1. |
陈跃,雷琪琪,马东民,王馨,王兴刚,黄蝶芳,荣高翔. 三塘湖盆地条湖—马朗凹陷侏罗系西山窑组巨厚煤层孔隙多尺度联合表征. 石油实验地质. 2025(01): 104-116 .
![]() |