Advance Search
WANG Manli,ZHANG Hang,LI Jiayue,et al. Deep neural network-based image enhancement algorithm for low-illumination images underground coal mines[J]. Coal Science and Technology,2023,51(9):231−241. DOI: 10.12438/cst.2022-1626
Citation: WANG Manli,ZHANG Hang,LI Jiayue,et al. Deep neural network-based image enhancement algorithm for low-illumination images underground coal mines[J]. Coal Science and Technology,2023,51(9):231−241. DOI: 10.12438/cst.2022-1626

Deep neural network-based image enhancement algorithm for low-illumination images underground coal mines

Funds: 

National Natural Science Foundation of China(52074305); Henan Province Science and Technology Research and Development Fund Project (212102210005); Key Research and Development Program of Shanxi Province (2020XXX001)

More Information
  • Received Date: October 06, 2022
  • Available Online: August 01, 2023
  • Due to the complexity of the spatial environment and poor lighting conditions in underground coal mines, the images obtained by vision devices are prone to problems such as insufficient contrast and poor texture details, which seriously affect the reliability of the work of vision devices and limit further image-based intelligent applications. To improve the contrast of low-illumination images in underground mines while enhancing their texture details, a deep neural network-based low-illumination image enhancement model is proposed, which contains three sub-networks, namely, decomposition network, illumination adjustment network and reflection reconstruction network. The decomposition network decomposes the underground coal mine image into light and reflection components; the light adjustment network effectively reduces the parameters of the model using depth-separable convolutional structure and strengthens the feature extraction ability of the network; in addition, the MobileNet network structure is introduced to further lighten the light adjustment network while maintaining its feature extraction accuracy and effectively realizing the contrast adjustment of light components; the reflection reconstruction network introduces a residual network structure to improve the contrast adjustment of light components. Finally, the processed illumination and reflection components are fused based on Retinex theory to obtain enhanced images, which achieve contrast enhancement and detail enhancement of underground mine images, overcoming the problems of detail loss, blurred edges, and lack of contrast and clarity of the enhanced image that exist in existing enhancement algorithms. Numerical experiments show that the proposed model can effectively enhance the texture details of the image while improving the contrast of underground mine images, and has good stability and robustness, which can well meet the needs of low-light image enhancement in coal mines.

  • [1]
    钱鸣高. 煤炭的科学开采[J]. 煤炭学报,2010,35(4):1−6. doi: 10.13225/j.cnki.jccs.2010.04.007

    QIAN Minggao. Scientific mining of coal[J]. Journal of China Coal Society,2010,35(4):1−6. doi: 10.13225/j.cnki.jccs.2010.04.007
    [2]
    GUO X,LI Y,LING H. LIME: Low-Light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing,2017,26(2):982−993. doi: 10.1109/TIP.2016.2639450
    [3]
    SHU Hang,WANG Jin,ZHENG Haimiao,et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing,2013,22(9):3538−3548. doi: 10.1109/TIP.2013.2261309
    [4]
    CHULWOO L,CHUL L,YOUNG-YOON L,et al. A power-constrained contrast enhancement for emissive displays based on histogram equalization[J]. IEEE Transactions on Image Processing,2012,21(1):80−93. doi: 10.1109/TIP.2011.2159387
    [5]
    LI Mading, LIU Jiaying, YANG Wenhai, et al. Structure-revealing low-light image enhancement via robust retinex model[C]// IEEE Transactions on Image Processing, 2018, 27(6): 2828−2841.
    [6]
    XUAN D, PANG Y A, WEN J G. Fast efficient algorithm for enhancement of low lighting video[C]// IEEE International Conference on Multimedia & Expo, 2011: 1−6.
    [7]
    LORE K G,AKINTAYO A,SARKAR S. LLNet: A deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition,2017,61(6):650−662. doi: 10.1016/j.patcog.2016.06.008
    [8]
    LI C,GUO C,HAN L,et al. Low-light image and video enhancement using deep learning: a survey[J]. Computer Vision and Pattern Recognition,2021,61(4):1−12.
    [9]
    LU Kun,ZHANG Lihong. TBEFN: A two-branch exposure-fusion network for low-light image enhancement[J]. IEEE Transactions on Multimedia,2021(23):4093−4105.
    [10]
    WANG W, CHEN W, YANG W, et al. GLADNet: Low-light enhancement network with global awareness[C]// 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition, 2018: 1−13.
    [11]
    WEI C,WANG W,YANG W,et al. Deep retinex decomposition for low-light enhancement[J]. Computer Vision and Pattern Recognition,2018:1−12.
    [12]
    ZHANG Y, ZHANG J, GUO X. Kindling the darkness: a practical low-light image enhancer[C]// ACM MM, 2019: 1632−1640.
    [13]
    ZHANG Y,GUO X,MA J,et al. Beyond brightening low-light images[J]. International Journal of Computer Vision,2021,129(4):1013−1037. doi: 10.1007/s11263-020-01407-x
    [14]
    ZHANG Y, DI X, ZHANG B, et al. Self-supervised image enhancement network: training with low light images only, 2020: 1−14.
    [15]
    RONNEBERGER O,FISCHER P,BROX T. U-Net: Convolutional networks for biomedical image segmentation[J]. Springer International Publishing,2015,99:1−1.
    [16]
    CLEVERT D, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units (ELUs)[J]. Computer Science, 2015: 1−14.
    [17]
    IMTIAZ M S, WAHID K A. Image enhancement and space-variant color reproduction method for endoscopic images using adaptive sigmoid function[C]// Engineering in Medicine & Biology Society, Conf Proc IEEE Eng Med Biol Soc, 2014: 3905−3908.
    [18]
    HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[J]. Computer Vision and Pattern Recognition, 2017: 1−9.
    [19]
    CHEN LC, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the European conference on computer vision (ECCV), 2018: 801−818.
    [20]
    王满利, 田子建. 基于非下采样轮廓波变换的矿井图像增强算法[J]. 煤炭学报, 2020, 45(9): 3351−3362.

    WANG Manli, TIAN Zijian: Mine image enhancement algorithm based on non-subsampled contourlet transform[J]. Journal of China Coal Society, 2020, 45(9): 3351−3362.
    [21]
    SETIADI D. PSNR vs SSIM: imperceptibility quality assessment for image steganography[J]. Multimedia Tools and Applications, 2020: 1−22.
    [22]
    曹现刚,郝朋英,王 鹏,等. 多因素光照条件下高质量图像获取方法研究[J]. 煤炭科学技术,2023,51(1):455−463.

    CAO Xiangang,HAO Mingying,WANG Peng,et al. Study on high quality image acquisition under multi - factor illumination[J]. Coal Science and Technology,2023,51(1):455−463.
    [23]
    龚 云,颉昕宇. 基于同态滤波方法的煤矿井下图像增强技术研究[J]. 煤炭科学技术,2023,51(3):241−250. doi: 10.13199/j.cnki.cst.2021-0774

    GONG Yun,XIE Xinyu. Research on coal mine underground image recognition technology based on homomorphic filtering method[J]. Coal Science and Technology,2023,51(3):241−250. doi: 10.13199/j.cnki.cst.2021-0774
  • Related Articles

    [1]CHEN Xiangyuan, QIN Wei, LIU Yanchi, LUO Minghua. Audio recognition method of belt conveyor roller fault based on convolutional neural network and linear regression[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(S1): 389-398. DOI: 10.12438/cst.2024-0229
    [2]TIAN Feng, CHEN Tingting, LIU Xiaopei. Retinex-Net mine image enhancement algorithm based on adaptive illumination estimation[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(7): 234-248. DOI: 10.12438/cst.2024-0561
    [3]WANG Dengke, WANG Longhang, QIN Yaguang, WEI Le, CAO Tanggen, LI Wenrui, LI Lu, CHEN Xu, XIA Yuling. Fracture identification and 3D reconstruction of coal-rock combinations based on VRA-UNet network[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(2): 96-108. DOI: 10.12438/cst.2024-1441
    [4]WANG Yuanbin, GUO Yaru, LIU Jia, WANG Xu, WU Bingchao, LIU Meng. Low illumination image enhancement algorithm of CycleGAN coal mine based on attention mechanism and Dilated convolution[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S2): 375-383. DOI: 10.12438/cst.2023-1597
    [5]DONG Fei, ZHANG Di, GE Kunpeng, CHEN Junjie, XU Xinyue. Fault diagnosis and inference of hoist main bearing based on transfer learning and ontology[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(S2): 249-266. DOI: 10.12438/cst.2024-0606
    [6]ZOU Liang, CHEN Zhifeng, TAN Zhiyi, YUAN Yilin, LEI Meng, HE Kun. Scratch detection and restoration of coal photomicrograph via deep neural network[J]. COAL SCIENCE AND TECHNOLOGY, 2023, 51(S2): 275-284. DOI: 10.13199/j.cnki.cst.2023-0058
    [7]LI Jianlin, GAO Peiqiang, WANG Xinyi, ZHAO Shuaipeng. Prediction of mine water inflow based on Chaos-GeneralizedRegression Neural Network[J]. COAL SCIENCE AND TECHNOLOGY, 2022, 50(4): 149-155.
    [8]WANG Hong, YOU Xiusong, LI Shoubin, WEI Wenyan. Research on automation of support based on genetic algorithm and BP neural network[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 272-277. DOI: 10.13199/j.cnki.cst.2021.01.024
    [9]ZHANG Qiang, WANG Yu, WANG Chenqi. Research on identification of pick wear degree of roadheader based on PNN neural network[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (6).
    [10]PAN Hongyu, ZHAO Yunhong, ZHANG Weidong, BAI yun, HAN Yawei. Prediction of surface subsidence with improved BP neural network based on Adaboost[J]. COAL SCIENCE AND TECHNOLOGY, 2019, (2).
  • Cited by

    Periodical cited type(11)

    1. 王轶玮,李晓宇,翁智,白凤山. 基于改进Zero-DCE模型的矿井低照度图像增强方法. 工矿自动化. 2025(02): 57-64+99 .
    2. 白宇宸,苗作华,徐厚友,王梦婷. 基于光照约束的煤矿井下低光照图像增强算法. 煤矿安全. 2025(03): 207-214 .
    3. 叶梦君,胡长晖,焦冰,郝雯娟. 基于矩阵分解的低光照图像增强方法. 物联网技术. 2025(09): 24-29 .
    4. 张亚邦,李佳悦,王满利. 基于HSV空间的煤矿井下低光照图像增强方法. 红外技术. 2024(01): 74-83 .
    5. 谷亚楠,李晴,刘晨晨,张富凯. 基于增强网格网络的井下尘雾图像清晰化算法. 工矿自动化. 2024(10): 120-127+159 .
    6. 徐俊,戎舒畅,李墨,刘煊,刘昭含,吴镇. 基于深度卷积神经网络的低照度图像增强方法. 现代信息科技. 2024(21): 50-56 .
    7. 程健,米立飞,李昊,李和平,王广福,马永壮. 矿井图像的多维特征与残差注意力网络超分辨率重建方法. 煤炭科学技术. 2024(11): 117-128 . 本站查看
    8. 陈镜伊,谢瑞. 基于深度自编码网络的低照度图像边缘细节增强方法. 现代计算机. 2024(19): 24-27+31 .
    9. 张凯,郝康将,刘卓昆,彭甫镕,李国栋. 基于视觉监控的煤矿传送带防冻液自动喷洒系统. 煤炭工程. 2024(12): 169-175 .
    10. 朱米娜. 应用深度学习算法的Photoshop图像质量增强方法研究. 佳木斯大学学报(自然科学版). 2024(12): 71-74 .
    11. 王媛彬,郭亚茹,刘佳,王旭,吴冰超,刘萌. 基于注意力机制和空洞卷积的CycleGAN煤矿井下低照度图像增强算法. 煤炭科学技术. 2024(S2): 375-383 . 本站查看

    Other cited types(5)

Catalog

    Article views (380) PDF downloads (132) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return