Citation: | LIU Guangwei,TU Junxiong,GUO Weiqiang,et al. Transition and continuation scheme of open-pit mining area under complex engineering geological conditions[J]. Coal Science and Technology,2025,53(3):450−460. DOI: 10.12438/cst.2024-1363 |
When large-scale near-level coal field adopts open-pit mining, in order to realise safe and efficient production and recover the investment cost as soon as possible, it usually adopts the way of mining in sub-districts, so before the old mining area is about to reach the boundary, it is inevitable to consider the problem of the transition succession between the old and new mining areas. Therefore, before the old mining area reaches the boundary, the issue of the transition between the old and new mining areas must be considered. The formulation of a turning plan for an open-pit coal mine mining area is related to the smooth transition of production capacity during the turning period, which directly affects the economic benefits of the mine. In actual production, some mines are limited by issues such as the land acquisition system, mining intensity, and complex geological conditions, which force open-pit coal mines to turn early. Research has shown that by adjusting key parameters such as the length and advancement speed of the local working line during the turning period, the stripping and mining plan during the turning period can be optimized to ensure a smooth transition of the mine. Due to the serious deformation of the east side of the north bench of the Baiyinhua No.1 open-pit coal mine, the first mining area was forced to shift to the second mining area ahead of schedule in order to ensure the smooth continuation of production capacity. However, the land acquisition for the second mining area was limited, and the gentle bench working line could not be fully deployed, resulting in changes to the original mining procedures. In order to ensure the smooth transition of the first mining area to the second mining area of Baiyinhua No. 1 Open Pit Coal Mine, an improved method of transition and connection for the L-shaped working line mining area is proposed, and on this basis, the constraint relationship between the length and advancement of different working lines is clarified. Through engineering simulation, it is determined that the transition period from the first mining area to the second mining area of Baiyinhua No. 1 Open Pit Coal Mine is 6 years; the amount of coal that can be mined during the transition period is
[1] |
宋子岭,王肇东,范军富. 露天煤矿采区转向接续期间剥采工程优化[J]. 科技导报,2013,31(9):50−54. doi: 10.3981/j.issn.1000-7857.2013.09.008
SONG Ziling,WANG Zhaodong,FAN Junfu. Optimization of the trunsition from one mining area to the next engineering for mining in section surface coal mine[J]. Science & Technology Review,2013,31(9):50−54. doi: 10.3981/j.issn.1000-7857.2013.09.008
|
[2] |
顾正洪,李曙光,于汝绶. 近水平矿床露天矿采区的过渡方式[J]. 辽宁工程技术大学学报:自然科学版,1997,16(1):24−27.
GU Zhenghong,LI Shuguang,YU Rushou. Transition method of surface mines mining flat seams[J]. Journal of Fuxin Mining Institute:Natural Science,1997,16(1):24−27.
|
[3] |
刘光伟,李成盛,于渊. 露天煤矿采区接续方案[J]. 科技导报,2014,32(1):59−64.
LIU Guangwei,LI Chengsheng,YU Yuan. Mining area connection scheme in surface coal mine[J]. Science & Technology Review,2014,32(1):59−64.
|
[4] |
白润才,付恩三,马力,等. 露天煤矿安全-绿色-高效-低碳协同开采技术体系[J]. 煤炭学报,2024,49(1):298−308.
BAI Runcai,FU Ensan,MA Li,et al. Collaborative mining technological system of safety-green-high efficiency-low carbon for open pit coal mine[J]. Journal of China Coal Society,2024,49(1):298−308.
|
[5] |
赵红泽,郭锦桦,刘元旭,等. 再论露天矿群开采-采排复一体化协同采矿技术[J]. 煤炭科学技术,2022,50(2):47−55.
ZHAO Hongze,GUO Jinhua,LIU Yuanxu,et al. Discussion on coordination of open-pit mine group mining and integration of mining-dumping-reclaiming[J]. Coal Science and Technology,2022,50(2):47−55.
|
[6] |
刘震,王晓民,吕贵龙,等. 河曲露天煤矿采区转向方式研究[J]. 陕西煤炭,2023,42(6):140−144,149. doi: 10.3969/j.issn.1671-749X.2023.06.026
LIU Zhen,WANG Xiaomin,(LÜ/LV/LU/LYU) Guilong,et al. Turning mode of mining area in Hequ open pit coal mine[J]. Shaanxi Coal,2023,42(6):140−144,149. doi: 10.3969/j.issn.1671-749X.2023.06.026
|
[7] |
才庆祥,姬长生. 大型露天煤矿采区转向方式研究[J]. 中国矿业大学学报,1996,25(4):45−49.
CAI Qingxiang,JI Changsheng. Research on mining area steering mode of large opencast coal mine[J]. Journal of China University of Mining & Technology,1996,25(4):45−49.
|
[8] |
王韶辉,才庆祥,周伟,等. 新疆天池能源南露天煤矿转向方式优化研究[J]. 煤炭工程,2019,51(5):60−64.
WANG Shaohui,CAI Qingxiang,ZHOU Wei,et al. Research on optimization of steering scheme in Xinjiang Tianchi energy south open-pit mine[J]. Coal Engineering,2019,51(5):60−64.
|
[9] |
常治国,李克民,陈亚军,等. 露天矿采区直角转向缓帮留沟深度研究[J]. 煤炭工程,2014,46(7):88−90. doi: 10.11799/ce201407029
CHANG Zhiguo,LI Kemin,CHEN Yajun,et al. Study on right angled turning box retained depth with gently inclined slope in surface mine[J]. Coal Engineering,2014,46(7):88−90. doi: 10.11799/ce201407029
|
[10] |
李雁飞. 西湾露天煤矿采区转向方案研究[J]. 中国煤炭,2024,50(8):135−141.
LI Yanfei. Research on the turning plan of working area in Xiwan Open-pit Coal Mine[J]. China Coal,2024,50(8):135−141.
|
[11] |
曹博. 复杂条件露天矿采区转向及运排系统工程优化研究与应用[D]. 北京:中国矿业大学(北京),2013.
CAO Bo. The optimization research and application of surface mine transition alternative mode of mining area and transportation dumping engineering under complicated geologica conditions[D]. Beijing: China University of Mining and Technology-Beijing, 2013.
|
[12] |
刘桐. 霍林河一号露天矿采区划分及过渡优化研究[D]. 徐州:中国矿业大学,2017
LlU Tong. Optimization research on mining section dividing and transition for Huolin River No.1 open-pit mine[D]. Xuzhou: China University of Mining and Technology, 2017.
|
[13] |
赵波. 准东露天煤矿首采区转向方案优化研究[D]. 阜新:辽宁工程技术大学,2023.
ZHAO Bo. Study on optimization of steering scheme in the first mining area of Zhundong open-pit coal mine[D]. Fuxin:Liaoning Technical University,2023.
|
[14] |
徐志远,才庆祥,刘宪权. 安太堡露天煤矿采区转向过渡若干问题及对策[J]. 煤炭工程,2006,38(12):9−12. doi: 10.3969/j.issn.1671-0959.2006.12.002
XU Zhiyuan,CAI Qingxiang,LIU Xianquan. Several problems and countermeasures on mining block direction change period of Antaibao Open Pit Mine[J]. Coal Engineering,2006,38(12):9−12. doi: 10.3969/j.issn.1671-0959.2006.12.002
|
[15] |
孙俊东. 胜利一号露天矿采区转向方式优化研究[J]. 煤炭工程,2021,53(9):11−15.
SUN Jundong. Optimization of mining area steering scheme in Shengli No. 1 Open-pit Coal Mine[J]. Coal Engineering,2021,53(9):11−15.
|
[16] |
马力,李瑞行,刘福明,等. 露天煤矿产能核增影响下采区划分研究[J]. 煤炭科学技术,2023,51(11):63−70.
MA Li,LI Ruihang,LIU Fuming,et al. Study on division of mining area under influence of production capacity increasing of open-pit coal mine[J]. Coal Science and Technology,2023,51(11):63−70.
|
[17] |
王肇东. 分区开采露天煤矿采区接续剥采工程优化研究[D]. 阜新:辽宁工程技术大学,2015.
WANG Zhaodong. Study on optimization of continuous stripping engineering in open-pit coal mine by district mining[D]. Fuxin:Liaoning Technical University,2015.
|
[18] |
王永军. 露天矿重新拉沟采区接续方案研究[J]. 露天采矿技术,2015,30(7):10−13.
WANG Yongjun. Research on forming ditch mining area connecting scheme in open-pit mine[J]. Opencast Mining Technology,2015,30(7):10−13.
|
[19] |
王海,王海峰,李伟,等. 霍林河一号露天煤矿采区过渡优化研究[J]. 露天采矿技术,2016,31(12):1−5,9.
WANG Hai,WANG Haifeng,LI Wei,et al. Research on mining area transition optimization in Huolinhe No. 1 Open-pit Mine[J]. Opencast Mining Technology,2016,31(12):1−5,9.
|
[20] |
杨日,肖兵,黄月军,等. 胜利一号露天矿扇形转向过渡位置优化[J]. 露天采矿技术,2022,37(2):76−79.
YANG Ri,XIAO Bing,HUANG Yuejun. et al. Optimization of transition position of sector steering in Shengli No. 1 Open-pit Mine[J]. Opencast Mining Technology,2022,37(2):76−79.
|
1. |
刘江, 王辉. 煤矿带式输送机安全隐患视频识别技术研究与应用. 煤矿机械. 2025(07)
![]() | |
2. |
秦翥. 带式输送机智能化发展现状研究. 煤矿机械. 2025(01): 73-76 .
![]() | |
3. |
王春青,韩国庆,魏大伟,胡开庚,袁志金. 煤矿带式输送机AI视频监控系统与巡检机器人的对比研究. 煤矿机械. 2025(03): 98-100 .
![]() | |
4. |
方新秋,吴洋,宋扬,陈宁宁,丰宇龙,冯豪天,贺德幸,乔富康. 基于FBG传感器的带式输送机故障监测研究. 煤炭科学技术. 2025(01): 326-340 .
![]() | |
5. |
董礼,程丽敏,赵博,王雁冰,商志强,朱盼盼. 基于改进模式识别的无人值守风电场群组机器人集中巡检研究. 可再生能源. 2025(03): 346-352 .
![]() | |
6. |
王洪磊,郭鑫,张亦凡,张俊升. 煤质煤量全面在线检测技术发展现状及应用进展. 煤炭科学技术. 2024(02): 219-237 .
![]() | |
7. |
赵亮. 矿用带式输送机自动监控巡检系统分析. 现代制造技术与装备. 2024(01): 197-199 .
![]() | |
8. |
邵立新. 煤矿带式输送机巡检机器人关键技术研究. 机械管理开发. 2024(03): 192-193+196 .
![]() | |
9. |
田立勇,唐瑞,于宁,杨秀宇,秦文光. 带式输送机不停机更换托辊机器人研究与应用. 中国机械工程. 2024(05): 938-949 .
![]() | |
10. |
张克亮. 基于MT-CNN的矿井带式输送机输煤量检测技术. 中国矿业. 2024(06): 137-142 .
![]() | |
11. |
盛彬,吴利刚,张楠. 融合轻量化神经网络的矿用输送带钢芯损伤检测方法. 控制工程. 2024(07): 1254-1262 .
![]() | |
12. |
徐明辉. 煤矿带式输送机综合控制技术的运用研究. 内蒙古煤炭经济. 2024(13): 130-132 .
![]() | |
13. |
高飞. 基于改进DDNet的皮带输送机位移故障诊断研究. 计算机测量与控制. 2024(08): 47-54 .
![]() | |
14. |
程德强,钱建生,郭星歌,寇旗旗,徐飞翔,顾军,高亚超,赵金升. 煤矿安全生产视频AI识别关键技术研究综述. 煤炭科学技术. 2023(02): 349-365 .
![]() | |
15. |
蒋社想,周馨蕊. 带式输送机智能巡检系统设计. 煤炭技术. 2023(05): 203-206 .
![]() | |
16. |
桂改花,苑占江. 基于改进BP-PID的带式输送机速度控制方法. 工矿自动化. 2023(05): 104-111 .
![]() | |
17. |
李一文,陈湘源,张海峰. 煤矿井下巡检机器人机电转换充电方法. 自动化与仪表. 2023(06): 39-44 .
![]() | |
18. |
常健. 面向煤矿巡检任务的新型仿生爬线机器人关键技术. 煤矿安全. 2023(06): 244-248 .
![]() | |
19. |
秦伟,陈湘源,张海峰. 基于多轮驱动同步控制系统的矿用巡检机器人设计. 煤矿机械. 2023(08): 1-5 .
![]() | |
20. |
魏学平. 皮带运输机巡检机器人数据处理系统设计与实现. 机械工程与自动化. 2023(04): 144-146 .
![]() | |
21. |
范高鹏. 带式输送机自动监控巡检系统的设计应用. 江西煤炭科技. 2023(03): 238-240 .
![]() | |
22. |
蔺恩忠. 煤矿带式输送机轴承监测诊断系统应用研究. 科技资讯. 2023(16): 62-65 .
![]() | |
23. |
吴珊. 带式输送机托辊性能的分析及优化. 机械管理开发. 2023(10): 43-45 .
![]() | |
24. |
胡金良. 基于带式输送机的智能巡检研究. 中国安全科学学报. 2023(S1): 85-90 .
![]() | |
25. |
张立峰,武小芳. 基于PAC的输煤皮带巡检机器人设计与研究. 中国设备工程. 2023(23): 198-200 .
![]() | |
26. |
李洁. 煤矿多级带式输送机系统的节能控制研究. 机械管理开发. 2023(12): 202-204 .
![]() | |
27. |
张海峰. 煤矿挂轨式巡检机器人爬坡助力装置. 自动化与仪表. 2022(10): 48-51 .
![]() | |
28. |
王鹏,赵红菊. 煤矿场景下基于RGBD的视觉导航技术. 煤矿安全. 2022(11): 136-140 .
![]() | |
29. |
张超力,武国旺,孟超,王志红,刘红欣,梁国杰,霍斌洋,薛长站,苏周,梅东升. 输煤皮带巡检机器人系统上位机软件设计与实现. 能源与节能. 2022(12): 183-185 .
![]() | |
30. |
毛清华,李世坤,胡鑫,薛旭升,姚丽杰. 基于改进YOLOv7的煤矿带式输送机异物识别. 工矿自动化. 2022(12): 26-32 .
![]() | |
31. |
樊琛,王毅. 基于浮游式变压器巡检机器人系统设计与试验. 粘接. 2022(12): 174-177+191 .
![]() | |
32. |
刘寿恩. 露天输送带智能巡检系统设计. 数字技术与应用. 2021(11): 199-201 .
![]() |