Advance Search
NING Shuzheng,YAN Xiaoyun,HUANG Shaoqing,et al. Mineralization characteristics and exploration progress of germanium resources in Chinese coal[J]. Coal Science and Technology,2025,53(1):225−236. DOI: 10.12438/cst.2024-1772
Citation: NING Shuzheng,YAN Xiaoyun,HUANG Shaoqing,et al. Mineralization characteristics and exploration progress of germanium resources in Chinese coal[J]. Coal Science and Technology,2025,53(1):225−236. DOI: 10.12438/cst.2024-1772

Mineralization characteristics and exploration progress of germanium resources in Chinese coal

More Information
  • Received Date: December 01, 2024
  • Available Online: January 17, 2025
  • Germanium, as a typical scarce element and important strategic metal, is widely used in fields such as optoelectronics, semiconductors, and chemicals. The exploration and development of germanium resources are therefore of great significance. Under specific geological processes, germanium can be highly enriched in coal, making coal an important source of germanium. In China, germanium-bearing coal resources are notably advantageous and are primarily distributed in regions such as Lincang in Yunnan, and the Wumuchang mining area in the Ulan Tuha and Yimin coalfields of Inner Mongolia. This paper analyzes the resource distribution and exploration status of germanium in Chinese coal, and, in conjunction with the analysis of typical coal germanium deposits both domestically and internationally, introduces the discovery processes of large to super-large coal-based germanium deposits. The paper summarizes exploration techniques and prospecting experiences for different types of coal germanium deposits. Germanium enrichment in typical Chinese coal deposits is closely related to geological processes such as hydrothermal activity and diagenesis. However, the occurrence and enrichment characteristics of germanium in coal show regional variations. Compared to coal seams, the distribution of germanium in coal is highly unstable. For the exploration of germanium-rich coal, drilling-based techniques have been established through years of exploration practice. However, further exploration is needed to improve the efficiency of germanium exploration in coal. In the future, innovations in techniques such as geochemical exploration, geological model construction, and resource evaluation are expected to promote the efficient exploration and development of germanium in coal, providing resource security for emerging industries.

  • [1]
    MU R F,WANG S Q,WANG X L,et al. Organic modes of occurrence and evolution mechanism of germanium and lithium in coal:Insights from density functional theory[J]. International Journal of Coal Geology,2025,298:104661. doi: 10.1016/j.coal.2024.104661
    [2]
    WEI Q,ZHAO L. Modes of occurrence of beryllium in the Ge-rich coal deposit,Lincang,SW China:Theoretical insight into organic association and distribution[J]. Journal of Hazardous Materials,2024,480:135913. doi: 10.1016/j.jhazmat.2024.135913
    [3]
    张苏江,张新智,邓文兵. 全球锗资源分布供需与产业链发展现状思考[J]. 矿产综合利用,2024(4):11−20. doi: 10.3969/j.issn.1000-6532.2024.04.002

    ZHANG Sujiang,ZHANG Xinzhi,DENG Wenbing. Distribution and supply of germanium resources in China and abroad and development status of antimony industry China[J]. Multipurpose Utilization of Mineral Resources,2024(4):11−20. doi: 10.3969/j.issn.1000-6532.2024.04.002
    [4]
    商务部 海关总署公告 2023年第23号 关于对镓、锗相关物项实施出口管制的公告[EB/OL]. (2023−07−03)[2024−12−01]. http://www.mofcom.gov.cn/.
    [5]
    宁树正,黄少青,严晓云,等. 我国煤系锗镓资源前景及研究方向[J]. 中国矿业,2023,32(11):1−11. doi: 10.12075/j.issn.1004-4051.20230664

    NING Shuzheng,HUANG Shaoqing,YAN Xiaoyun,et al. Prospect and research direction of germanium and gallium resources in coal-bearing strata in China[J]. China Mining Magazine,2023,32(11):1−11. doi: 10.12075/j.issn.1004-4051.20230664
    [6]
    宁树正,黄少青,朱士飞,等. 中国煤中金属元素成矿区带[J]. 科学通报,2019,64(24):2501−2513. doi: 10.1360/N972019-00377

    NING Shuzheng,HUANG Shaoqing,ZHU Shifei,et al. Mineralization zoning of coal-metal deposits in China[J]. Chinese Science Bulletin,2019,64(24):2501−2513. doi: 10.1360/N972019-00377
    [7]
    温汉捷,朱传威,杜胜江,等. 中国镓锗铊镉资源[J]. 科学通报,2020,65(33):3688−3699. doi: 10.1360/TB-2020-0267

    WEN Hanjie,ZHU Chuanwei,DU Shengjiang,et al. Gallium(Ga),germanium(Ge),thallium(Tl) and cadmium(Cd) resources in China[J]. Chinese Science Bulletin,2020,65(33):3688−3699. doi: 10.1360/TB-2020-0267
    [8]
    代世峰,刘池洋,赵蕾,等. 煤系中战略性金属矿产资源:意义和挑战[J]. 煤炭学报,2022,47(5):1743−1749.

    DAI Shifeng,LIU Chiyang,ZHAO Lei,et al. Strategic metal resources in coal-bearing strata:Significance and challenges[J]. Journal of China Coal Society,2022,47(5):1743−1749.
    [9]
    SEREDIN V V,FINKELMAN R B. Metalliferous coals:A review of the main genetic and geochemical types[J]. International Journal of Coal Geology,2008,76(4):253−289. doi: 10.1016/j.coal.2008.07.016
    [10]
    任德贻,赵峰华,代世峰,等. 煤的微量元素地球化学[M]. 北京:科学出版社,2006.
    [11]
    赵汀,刘超,王登红,等. 中国锗矿资源保障程度与潜力评价[J]. 中国矿业,2024,33(4):57−68. doi: 10.12075/j.issn.1004-4051.20240546

    ZHAO Ting,LIU Chao,WANG Denghong,et al. Security and potential assessment of germanium ore resources in China[J]. China Mining Magazine,2024,33(4):57−68. doi: 10.12075/j.issn.1004-4051.20240546
    [12]
    WEI Q,WANG S B,ZHAO L,et al. Modes of occurrence of organically-associated arsenic in Ge-rich coal deposits[J]. Fuel,2024,371:132067. doi: 10.1016/j.fuel.2024.132067
    [13]
    U. S. Geological Survey. Mineral commodity summaries 2020. (2020)[2024−12−01]. https://doi.org/10.3133/mcs2020.
    [14]
    赵汀,王登红,刘超,等. 中国锗矿成矿规律与开发利用现状[J]. 地质学报,2019,93(6):1245−1251. doi: 10.3969/j.issn.0001-5717.2019.06.006

    ZHAO Ting,WANG Denghong,LIU Chao,et al. Metallogenic and utilization status of Ge deposit in China[J]. Acta Geologica Sinica,2019,93(6):1245−1251. doi: 10.3969/j.issn.0001-5717.2019.06.006
    [15]
    黄文辉,赵继尧. 中国煤中的锗和镓[J]. 中国煤田地质,2002,14(S1):64−69.

    HUANG Wenhui,ZHAO Jiyao. Germanium and gallium in coal of China[J]. Coal Geology of China,2002,14(S1):64−69.
    [16]
    黄少青,张建强,张恒利. 东北赋煤区煤中锗元素分布特征及富集控制因素[J]. 煤田地质与勘探,2018,46(3):6−10. doi: 10.3969/j.issn.1001-1986.2018.03.002

    HUANG Shaoqing,ZHANG Jianqiang,ZHANG Hengli. Distribution and controlling factors of enrichment of germanium in coal-bearing region of NorthEast China[J]. Coal Geology & Exploration,2018,46(3):6−10. doi: 10.3969/j.issn.1001-1986.2018.03.002
    [17]
    王婷灏. 内蒙古乌兰图嘎煤—锗矿床富集规律与地球化学性质研究[D]. 北京:中国地质大学(北京),2016.

    WANG Tinghao. Study on enrichment law and geochemical properties of Wulantuga coal-germanium deposit in Inner Mongolia[D]. Beijing:China University of Geosciences,2016.
    [18]
    ZHUANG X G,QUEROL X,ALASTUEY A,et al. Geochemistry and mineralogy of the Cretaceous Wulantuga high-germanium coal deposit in Shengli coal field,Inner Mongolia,Northeastern China[J]. International Journal of Coal Geology,2006,66(1-2):119−136. doi: 10.1016/j.coal.2005.06.005
    [19]
    DAI S F,REN D Y,CHOU C L,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94:3−21. doi: 10.1016/j.coal.2011.02.003
    [20]
    DAI S F,FINKELMAN R B,FRENCH D,et al. Modes of occurrence of elements in coal:A critical evaluation[J]. Earth-Science Reviews,2021,222:103815. doi: 10.1016/j.earscirev.2021.103815
    [21]
    王婷灏,黄文辉,闫德宇,等. 中国大型煤-锗矿床成矿模式研究进展:以云南临沧和内蒙古乌兰图嘎煤-锗矿床为例[J]. 地学前缘,2016,23(3):113−123.

    WANG Tinghao,HUANG Wenhui,YAN Deyu,et al. Progress of research on mineralization mode of large coal-Ge deposits in China:Coal-Ge deposit in Wulantuga of Inner Mongolia and Lincang of Yunan[J]. Earth Science Frontiers,2016,23(3):113−123.
    [22]
    矿产资源保护监督司. 2022年全国矿产资源储量统计表[EB/OL]. (2023−06−16)[2024−12−01]. https://www.mnr.gov.cn/sj/sjfw/kc_19263/kczycltjb/202408/P020240806580597739563.pdf.
    [23]
    代世峰,魏强,王西勃,等. 煤型锗矿床[M]. 北京:科学出版社,2021.
    [24]
    DAI S F,FINKELMAN R B,HOWER J C,et al. Inorganic geochemistry of coal[M]. San Diego: Elsevier, 2023.
    [25]
    WEI Q,ZHAO L,WEI R F. Uranium speciation in the Lincang Ge-rich coal deposit,Yunnan Province,China:Theoretical implication for uranyl fixation and U mineralization[J]. Ore Geology Reviews,2024,171:106171. doi: 10.1016/j.oregeorev.2024.106171
    [26]
    HU R Z,QI H W,ZHOU M F,et al. Geological and geochemical constraints on the origin of the giant Lincang coal seam-hosted germanium deposit,Yunnan,SW China:A review[J]. Ore Geology Reviews,2009,36(1-3):221−234. doi: 10.1016/j.oregeorev.2009.02.007
    [27]
    李慧,刘显凡,肖文君. 临沧锗矿床地质特征及成因[J]. 地质论评,2015,61(S1):335−336.

    LI Hui,LIU Xianfan,XIAO Wenjun. Geological characteristics and genesis of Lincang germanium deposit[J]. Geological Review,2015,61(S1):335−336.
    [28]
    戚华文,胡瑞忠,苏文超,等. 临沧锗矿褐煤的稀土元素地球化学[J]. 地球化学,2002,31(3):300−308. doi: 10.3321/j.issn:0379-1726.2002.03.012

    QI Huawen,HU Ruizhong,SU Wenchao,et al. REE geochemistry of lignites in Lincang germanium deposit,Yunnan Province[J]. Geochimica,2002,31(3):300−308. doi: 10.3321/j.issn:0379-1726.2002.03.012
    [29]
    DAI S F,WANG X B,SEREDIN V V,et al. Petrology,mineralogy,and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit,Inner Mongolia,China:New data and genetic implications[J]. International Journal of Coal Geology,2012,90:72−99.
    [30]
    QI H W,HU R Z,ZHANG Q. REE geochemistry of the Cretaceous lignite from wulantuga germanium deposit,Inner Mongolia,northeastern China[J]. International Journal of Coal Geology,2007,71(2-3):329−344. doi: 10.1016/j.coal.2006.12.004
    [31]
    魏迎春,李新,曹代勇,等. 煤与煤系战略性金属矿产协同勘查技术方法[J]. 煤炭科学技术,2023,51(12):27−41. doi: 10.12438/cst.2023-1115

    WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration methods of coal and strategic metal resources in coal-bearing strata[J]. Coal Science and Technology,2023,51(12):27−41 doi: 10.12438/cst.2023-1115
    [32]
    LI X,WEI Y C,CAO D Y,et al. Cooperative exploration model of coal–Ge deposit:A case study of the Wulantuga coal–Ge deposit in Shengli coalfield,Inner Mongolia,China[J]. Energy Exploration & Exploitation,2024,42(5):1666−1683.
    [33]
    DU G,ZHUANG X G,QUEROL X,et al. Ge distribution in the Wulantuga high-germanium coal deposit in the Shengli coalfield,Inner Mongolia,northeastern China[J]. International Journal of Coal Geology,2009,78(1):16−26. doi: 10.1016/j.coal.2008.10.004
    [34]
    孙升林,吴国强,曹代勇,等. 煤系矿产资源及其发展趋势[J]. 中国煤炭地质,2014,26(11):1−11. doi: 10.3969/j.issn.1674-1803.2014.11.01

    SUN Shenglin,WU Guoqiang,CAO Daiyong,et al. Mineral resources in coal measures and development trend[J]. Coal Geology of China,2014,26(11):1−11. doi: 10.3969/j.issn.1674-1803.2014.11.01
    [35]
    敖卫华,黄文辉,马延英,等. 中国煤中锗资源特征及利用现状[J]. 资源与产业,2007,9(5):16−18. doi: 10.3969/j.issn.1673-2464.2007.05.005

    AO Weihua,HUANG Wenhui,MA Yanying,et al. Features and utilization of germanium resource in coal in China[J]. Resources & Industries,2007,9(5):16−18. doi: 10.3969/j.issn.1673-2464.2007.05.005
    [36]
    林堃琦,黄文辉,汪远征,等. 伊敏煤田五牧场区富锗煤分布规律及成矿机理分析[J]. 中国煤炭地质,2016,28(2):1−6. doi: 10.3969/j.issn.1674-1803.2016.02.01

    LIN Kunqi;HUANG Wenhu;WANG Yuanzhenget al. Germanium-rich coal distribution pattern and metallogenic mechanism analysis in wumuchang district,yimin coalfield[J]. Coal Geology of China,2016,28(2):1−6. doi: 10.3969/j.issn.1674-1803.2016.02.01
    [37]
    曹代勇,魏迎春,李新,等. 煤与煤系战略性金属矿产协同勘查理论与技术体系框架探讨[J]. 煤炭学报,2024,49(1):479−494.

    CAO Daiyong,WEI Yingchun,LI Xin,et al. Discussion on the theory and technical system framework of cooperative exploration of coal and strategic metal resources in coal-bearing strata[J]. Journal of China Coal Society,2024,49(1):479−494.
    [38]
    龙庆兵、吴迎波. 云南省临沧大寨铀锗矿核查矿区资源储量核查报告[R]. 云南:云南省核工业二〇九地质大队,2010
    [39]
    海宇,孟庆宇,李志广,等. 内蒙古自治区胜利煤田乌兰图嘎矿区煤、锗矿资源储量核实报告[R]. 内蒙古:锡林郭勒盟乌兰图嘎煤炭有限责任公司,2019.
    [40]
    卢家烂,庄汉平,傅家谟,等. 临沧超大型锗矿床的沉积环境、成岩过程和热液作用与锗的富集[J]. 地球化学,2000,29(1):36−42. doi: 10.3321/j.issn:0379-1726.2000.01.006

    LU Jialan,ZHUANG Hanping,FU Jiamo,et al. Sedimentation,diagenesis,hydrothermal process and mineralization of germanium in the Lincang superlarge germanium deposit in Yunnan Province,China[J]. Geochimica,2000,29(1):36−42. doi: 10.3321/j.issn:0379-1726.2000.01.006
    [41]
    QI H W,HU R Z,SU W C,et al. Continental hydrothermal sedimentary siliceous rock and genesis of superlarge germanium (Ge) deposit hosted in coal:A study from the Lincang Ge deposit,Yunnan,China[J]. Science in China Series D:Earth Sciences,2004,47(11):973−984. doi: 10.1360/02yc0141
    [42]
    樊金云,牛丽,池海,等. (2013). 内蒙古自治区鄂温克族自治旗五牧场锗矿资源评价报告[R]. 内蒙古:内蒙古自治区煤田地质局109勘探队.
    [43]
    黄少青,张建强,霍超,等. 热液对五牧场矿区煤中锗富集影响的探讨[J]. 中国煤炭地质,2017,29(4):12−17. doi: 10.3969/j.issn.1674-1803.2017.04.03

    HUANG Shaoqing,ZHANG Jianqiang,HUO Chao,et al. Discussion on germanium enrichment in coal impacted by hydrothermal solution in wumuchang minefield[J]. Coal Geology of China,2017,29(4):12−17. doi: 10.3969/j.issn.1674-1803.2017.04.03
    [44]
    魏迎春,李新,曹代勇,等. 煤与煤系战略性金属矿产协同勘查模型[J]. 地质学报,2024,98(8):2517−2530.

    WEI Yingchun,LI Xin,CAO Daiyong,et al. Cooperative exploration model of coal and strategic metal resourcesin coal-bearing strata[J]. Acta Geologica Sinica,2024,98(8):2517−2530.
    [45]
    LI X,WEI Y C,CAO D Y,et al. Cooperative exploration model of coal–lithium deposit:A case study of the haerwusu coal–lithium deposit in the jungar coalfield,Inner Mongolia,northern China[J]. Minerals,2024,14(2):179. doi: 10.3390/min14020179
    [46]
    ZHANG Y,WEI Y C,CAO D Y,et al. Cooperative exploration model of coal–gallium deposit:A case study of the Heidaigou coal–gallium deposit in the jungar coalfield,Inner Mongolia,China[J]. Minerals,2024,14(2):156. doi: 10.3390/min14020156
  • Related Articles

    [1]YANG Ke, YU Xiang, HE Xiang, ZHAO Xinyuan, FANG Juejing, WEI Zhen, HE Shuxin. Method and application of coal-based solid waste filling in multi-layer three-dimensional space of coal mining[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(6): 46-64. DOI: 10.12438/cst.2025-0567
    [2]LI Shuaiqian, GUO Zhongping, WEN Zhuoyue, XIE Zhonghui, HOU Zhengtao, LI Peng. Analysis of coal mine environment corrosion tendency based on fuzzy comprehensive evaluation method[J]. COAL SCIENCE AND TECHNOLOGY, 2025, 53(5): 52-63. DOI: 10.12438/cst.2024-0150
    [3]ZHANG Yafei, ZHANG Songhang, DENG Zhiyu, WANG Ruixin, LIU Guangjing. A prediction method for coalbed methane development sweet spots based on hierarchical analysis and grey fixed-weight clustering: taking Shizhuangbei block as an example[J]. COAL SCIENCE AND TECHNOLOGY, 2024, 52(5): 166-175. DOI: 10.12438/cst.2023-0708
    [4]MA Jingong. Study on feasibility evaluation of continuous mining of residual coal based on variable weight fuzzy theory[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(8): 30-37.
    [5]WANG Guofa, PANG Yihui, LIU Feng, LIU Jianzhong, FAN Jingdao, WU Qunying, MENG Xiangjun, XU Yajun, REN Huaiwei, DU Yibo, ZHAO Guorui, LI Mingzhong, MA Ying, ZHANG Jinhu. Specification and classification grading evaluation index system for intelligent coal mine[J]. COAL SCIENCE AND TECHNOLOGY, 2020, 48(3).
    [6]ZHANG Xiaodong, ZHANG Shuo, XU Yakun, WANG Kun, ZHANG Peng, ZHU Chunhui. Favorable block prediction of coal measure gas resource exploration inEastern Henan Area based on fuzzy mathematics[J]. COAL SCIENCE AND TECHNOLOGY, 2018, (11).
    [7]Xu Yanchun Gao Yubing Li Jianghua Gu Wenzhe, . Improvement and application of mine shaft safety evaluation system[J]. COAL SCIENCE AND TECHNOLOGY, 2016, (10).
    [8]ZHAI Gui-wu. Study and Practices on Construction of World First Class Mine[J]. COAL SCIENCE AND TECHNOLOGY, 2014, (1).
    [9]Study on Evaluation Method of Mine Regional Pressure Bumping Danger Based on Dynamic Weight[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (10).
    [10]Evaluation Index System of Old Mine Ventilation System and Application[J]. COAL SCIENCE AND TECHNOLOGY, 2011, (8).
  • Cited by

    Periodical cited type(13)

    1. 田晓雷. 煤柱回收条件下煤层底板与煤层上山稳定性分析. 煤炭科技. 2025(03)
    2. 杜乐, 许昊, 华张. 近距离煤层下行充填开采覆岩运移规律数值模拟研究. 煤矿现代化. 2025(05)
    3. 邵轩,陈林林,史开文,陈结,蒲源源,黄慧琼,许乐. 采动诱发近距离煤层覆岩损伤演化规律及模拟研究. 矿业研究与开发. 2025(01): 135-143 .
    4. 陈建本. 近距离动压工作面优化与巷道矿压显现规律研究. 煤炭技术. 2025(04): 33-36 .
    5. 李健光,卫政宇. 极近距离煤层开采覆岩运移特征及变形机理研究. 煤炭与化工. 2025(03): 17-22+26 .
    6. 李振安,张振国,孙延斌,侯晓松. 近距离煤层回采覆岩运移规律及下伏巷道围岩变形特征研究. 中国煤炭. 2025(04): 76-85 .
    7. 李健光,卫政宇,李雨田. 近距离煤层下位煤层巷道布置与控制技术研究. 山西焦煤科技. 2025(04): 13-18 .
    8. 张伟,张国俊,石永光,甄伟杰,王玉亮,李宜杭,李杨. 近距离煤层采空区下综放工作面巷道合理位置研究. 工矿自动化. 2024(09): 90-97 .
    9. 赵振飞,高雁,刘文学. 近距离下层煤回采巷道变形机理及支护研究. 煤炭技术. 2024(12): 62-67 .
    10. 赵洪宝,戈海宾,程辉,张鸿伟. 基于PSO-AHP算法的三向应力条件下巷道布置优化及应用. 采矿与岩层控制工程学报. 2024(06): 21-32 .
    11. 杨伟昆,张向阳,卜庆为,都航,张帅,杨德群. 多重采动下巷道变形时空规律及协同控制研究. 金属矿山. 2024(12): 106-115 .
    12. 袁立,白伟,冯磊. 基于围岩变形破坏机理的巷道支护设计. 煤炭科技. 2024(06): 13-19+24 .
    13. 袁磊,蒋涵. 考虑长期稳定性的深部近距离煤层护巷煤柱合理宽度研究. 中国煤炭. 2024(12): 83-90 .

    Other cited types(4)

Catalog

    Article views (326) PDF downloads (113) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return