Citation: | LI Xiuli,CHEN Jian,LI Yang,et al. Research progress in the geochemistry characteristics of scandium in Chinese coals[J]. Coal Science and Technology,2024,52(5):191−208. DOI: 10.12438/cst.2023-0905 |
Scandium (Sc), which has a high melting point and a low density, is widely used in lighting, alloys, ceramics, catalysts, and other industrial fields. Under a specific geological condition, Sc could be enriched in certain coal. As one of strategic metals hosted in coals, the geochemistry of Sc is a hot topic in coal geology. In order to clarify the geochemical characteristics of Sc in Chinese coals, based on a comprehensive collection of the data of Sc concentrations in Chinese coals and four cases of the Huainan coals of Anhui, the Nantong coals of Chongqing, the Baoding coals of Sichuan, and the Mengtuo coals of Yunnan, the content, temporal and spatial distribution, modes of occurrence, and enrichment mechanism of Sc in Chinese coals were discussed, and the Sc resources hosted in coal measures was assessed as well. Results indicated that the scandium in Chinese coals was at normal level with an average of 4.02 mg/kg, which was slightly higher than that of world hard coal. The concentrations of scandium in certain coals from Guizhou, Chongqing, Anhui, Guangxi, Inner Mongolia, Shanxi, and Yunnan were elevated, and with the maximum Sc concentration of 139 mg/kg. Regarding a coalbed, Sc was preferably enriched in country rocks, e.g., the roof, floor, and parting rocks, relative to coal benches. Most Sc-rich Chinese coals were bituminous and with a coal-forming period of Permian, while the Late Jurassic - Early Cretaceous coals were of a low Sc content. Overall, due to a high mineral matter content in the high-ash and sapropelic coals, its Sc concentrations increased. As a lithophilic element, Sc in coals was dominantly hosted in minerals, especially silicate minerals, e.g., kaolinite, and some authigenic minerals, e.g., xenotime. Sc was also partially bounded to organic matter, especially the humic matter in low rank coals. The genetic types of Sc enrichment in Chinese coals included: ① Mafic source rock type. As a compatible element, Sc was of a higher concentration in mafic rocks than that of intermediate and felsic ones. Correspondingly, the weathering of mafic source rock could lead to a Sc enrichment in certain coal; ② Paralic facies type. Due to the marine transgression, the increasing pH value of peat bogs with a large amount of humic acid facilitated the migration of Sc and its combination with organic matter; ③ Groundwater leaching type. The leaching of Sc-bearing minerals by groundwater resulted into a local Sc enrichment in coal benches of a coalbed; ④ Hydrothermal solution type. Hydrothermal solutions leached and/or transported Sc into a coal via a mineral precipitation; ⑤ Magmatic and metamorphic type. Igneous intrusion led to a rise of coal rank, resulting in a reduce of organic matter bound Sc. Meanwhile, Sc hosted by minerals in coals might be enriched due to the increased ash yields; ⑥ Volcanic ash type. Mafic tuff layers or tonsteins occurred in coal measures could provide the coalbeds with Sc.
[1] |
董 方,高利坤,陈 龙,等. 钪的资源及回收提取技术发展现状[J]. 矿产综合利用,2016(4):21−26.
DONG Fang,GAO Likun,CHEN Long,et al. Scandium resources and status of scandium extraction and recycling technology[J]. Multipurpose Utilization of Mineral Resources,2016(4):21−26.
|
[2] |
孙 军,刘云龙,崔 滔. 我国钪矿资源概况及产业发展建议[J]. 资源与产业,2019,21(2):74−79.
SUN Jun,LIU Yunlong,CUI Tao. Introduction to China’s scandium resource and suggestions on its industrial development[J]. Resources & Industries,2019,21(2):74−79.
|
[3] |
王祝堂. 铝–钪合金的性能与应用[J]. 铝加工,2012(3):4−14.
WANG Zhutang. Property and application of Al-Sc alloy[J]. Aluminium Fabrication,2012(3):4−14.
|
[4] |
BP中国. 《BP世界能源统计年鉴》2021年版[EB/OL]. (2021-7-8). https://www.bp.com.cn/zh_cn/china/home/news/reports/statistical-review-2021.html.
|
[5] |
代世峰,赵 蕾,魏 强,等. 中国煤系中关键金属资源:富集类型与分布[J]. 科学通报,2020,65(33):3715−3729. doi: 10.1360/TB-2020-0112
DAI Shifeng,ZHAO Lei,WEI Qiang,et al. Resources of critical metals in coal-bearing sequences in China:Enrichment types and distribution[J]. Chinese Science Bulletin,2020,65( 33):3715−3729. doi: 10.1360/TB-2020-0112
|
[6] |
赵宏军,陈秀法,李 娜,等. 全球钪资源供需分析及对策建议[J]. 中国矿业,2019,28(4):57−62.
ZHAO Hongjun,CHEN Xiufa,LI Na,et al. Analysis of the global distribution of scandium resources supply and demand status and suggestions[J]. China Mining Magazine,2019,28(4):57−62.
|
[7] |
PAZAND K,PAZAND K. Scandium geochemistry of coals from the Kerman Coalfield,southern Iran[J]. Arabian Journal of Geosciences,2021,14(11):1039. doi: 10.1007/s12517-021-07450-3
|
[8] |
ARBUZOV S I,VOLOSTNOV A V,MEZHIBOR A M,et al. Scandium (Sc) geochemistry in coals (Siberia,Russian Far East,Mongolia,Kazakhstan,and Iran)[J]. International Journal of Coal Geology,2014,125:22−35. doi: 10.1016/j.coal.2014.01.008
|
[9] |
BIELOWICZ B. Ash characteristics and selected critical elements (Ga,Sc,V) in coal and ash in Polish deposits[J]. Resources,2020,9(9):115. doi: 10.3390/resources9090115
|
[10] |
DAI S F,FINKELMAN R B. Coal as a promising source of critical elements:Progress and future prospects[J]. International Journal of Coal Geology,2018,186:155−164. doi: 10.1016/j.coal.2017.06.005
|
[11] |
SEREDIN V V,FINKELMAN R B. Metalliferous coals:a review of the main genetic and geochemical types[J]. International Journal of Coal Geology,2008,76(4):253−289. doi: 10.1016/j.coal.2008.07.016
|
[12] |
KETRIS M P,YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135−148. doi: 10.1016/j.coal.2009.01.002
|
[13] |
ARBUZOV S I,MASLOV S G,IL’ENOK S S. Modes of occurrence of scandium in coals and peats (a review)[J]. Solid Fuel Chemistry,2015,49(3):167−182. doi: 10.3103/S0361521915030027
|
[14] |
YOSSIFOVA M G. Mineral and inorganic chemical composition of the Pernik coal,Bulgaria[J]. International Journal of Coal Geology,2007,72(3/4):268−292.
|
[15] |
DAI S F,WANG X B,ZHOU Y P,et al. Chemical and mineralogical compositions of silicic,mafic,and alkali tonsteins in the Late Permian coals from the Songzao Coalfield,Chongqing,Southwest China[J]. Chemical Geology,2011,282(1/2):29−44.
|
[16] |
DAI S F,SONG W J,ZHAO L,et al. Determination of boron in coal using closed-vessel microwave digestion and inductively coupled plasma mass spectrometry (ICP-MS)[J]. Energy & Fuels,2014,28(7):4517−4522.
|
[17] |
LI X,DAI S F,ZHANG W G,et al. Determination of As and Se in coal and coal combustion products using closed vessel microwave digestion and collision/reaction cell technology (CCT) of inductively coupled plasma mass spectrometry (ICP-MS)[J]. International Journal of Coal Geology,2014,124:1−4. doi: 10.1016/j.coal.2014.01.002
|
[18] |
唐修义,黄文辉. 中国煤中微量元素[M]. 北京:商务印书馆,2004:1-390.
|
[19] |
DAI S F,ZHOU Y P,REN D Y,et al. Geochemistry and mineralogy of the Late Permian coals from the Songzo Coalfield,Chongqing,southwestern China[J]. Science in China Series D:Earth Sciences,2007,50(5):678−688. doi: 10.1007/s11430-007-0001-4
|
[20] |
白向飞,李文华,陈亚飞,等. 中国煤中微量元素分布基本特征[J]. 煤质技术,2007(1):1−4.
BAI Xiangfei,LI Wenhua,CHEN Yafei,et al. The general distributions of trace elements in Chinese coals[J]. Coal Quality Technology,2007(1):1−4.
|
[21] |
DAI S F,REN D Y,CHOU C L,et al. Geochemistry of trace elements in Chinese coals:a review of abundances,genetic types,impacts on human health,and industrial utilization[J]. International Journal of Coal Geology,2012,94:3−21. doi: 10.1016/j.coal.2011.02.003
|
[22] |
DAI S F,LI T,SEREDIN V V,et al. Origin of minerals and elements in the Late Permian coals,tonsteins,and host rocks of the Xinde Mine,Xuanwei,eastern Yunnan,China[J]. International Journal of Coal Geology,2014,121:53−78. doi: 10.1016/j.coal.2013.11.001
|
[23] |
DAI S F,REN D Y,TANG Y G,et al. Concentration and distribution of elements in Late Permian coals from western Guizhou Province,China[J]. International Journal of Coal Geology,2005,61(1/2):119−137.
|
[24] |
DAI S F,SEREDIN V V,WARD C R,et al. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions:geochemical and mineralogical data from the Late Permian Guiding Coalfield,Guizhou,China[J]. Mineralium Deposita,2015,50(2):159−186. doi: 10.1007/s00126-014-0528-1
|
[25] |
邹建华,刘 东,田和明,等. 内蒙古阿刀亥矿晚古生代煤的微量元素和稀土元素地球化学特征[J]. 煤炭学报,2013,38(6):1012−1018.
ZOU Jianhua,LIU Dong,TIAN Heming,et al. Geochemistry of trace and rare earth elements in the Late Paleozoic Coal from Adaohai Mine,Inner Mongolia[J]. Journal of China Coal Society,2013,38(6):1012−1018.
|
[26] |
刘东娜,赵峰华,周安朝,等. 大同煤田七峰山矿2号煤层若干微量元素地球化学特征[J]. 煤炭学报,2013,38(4):637−643.
LIU Dongna,ZHAO Fenghua,ZHOU Anchao,et al. The geochemistry of trace elements in the No. 2 coal seam of Qifengshan coalmine at Datong Coalfield[J]. Journal of China Coal Society,2013,38(4):637−643.
|
[27] |
WANG R X. Geological controls on mineralogy and geochemistry of an Early Permian coal from the Songshao mine,Yunnan Province,southwestern China[J]. Minerals,2016,6(3):66. doi: 10.3390/min6030066
|
[28] |
YUAN Y,TANG S H,ZHANG S H. Geochemical and mineralogical characteristics of the Middle Jurassic coals from the Tongjialiang Mine in the northern Datong Coalfield,Shanxi Province,China[J]. Minerals,2019,9(3):184. doi: 10.3390/min9030184
|
[29] |
吴艳艳,秦 勇,易同生,等. 凯里高硫煤中某些微量元素的富集及成因分析[J]. 地球化学,2008,37(6):615−622.
WU Yanyan,QIN Yong,YI Tongsheng,et al. Enrichment and geochemical origin of some trace elements in high-sulfur coal from Kaili,eastern Guizhou Province[J]. Geochimica,2008,37(6):615−622.
|
[30] |
QIN S J,GAO K,SUN Y Z,et al. Geochemical characteristics of rare-metal,rare-scattered and rare-earth elements,and minerals in the Late Permian coals from the Moxinpo Mine,Chongqing,China[J]. Energy Fuel,2018,32(3):3138−3151.
|
[31] |
李 祥,李 伍. 淮北煤田朱庄煤矿煤中微量元素地球化学特征[J]. 煤炭科学技术,2023,51(8):178−191.
LI Xiang,LI Wu. Geochemical characteristics of trace elements in Zhuzhuang Coal Mine of Huaibei coalfield[J]. Coal Science and Technology,2023,51(8):178−191.
|
[32] |
DING Dianshi,LIU Guijian,FU Biao,et al. Characteristics of the coal quality and elemental geochemistry in Permian coals from the Xinjier mine in the Huainan Coalfield,north China:Influence of terrigenous inputs[J]. Journal of Geochemical Exploration,2018,186:50−60. doi: 10.1016/j.gexplo.2017.12.002
|
[33] |
ZENG R S,ZHUANG X G,KOUKOUZAS N,et al. Characterization of trace elements in sulphur-rich Late Permian coals in the Heshan coal field,Guangxi,South China[J]. International Journal of Coal Geology,2005,61(1/2):87−95.
|
[34] |
ZHOU J B,ZHUANG X G,ALASTUEY A,et al. Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar Basin,Xinjiang Province,China[J]. International Journal of Coal Geology,2010,82(1/2):51−67.
|
[35] |
黄文辉,杨 起,汤达祯,等. 枣庄煤田太原组煤中微量元素地球化学特征[J]. 现代地质,2000,14(1):61−68.
HUANG Wenhui,YANG Qi,TANG Dazhen,et al. Trace elements geochemistry of the coals in the Taiyuan Formation from Zaozhuang coal field[J]. Geoscience,2000,14(1):61−68.
|
[36] |
张 华. 葛泉煤矿9号煤层中微量元素研究[J]. 煤炭与化工,2019,42(3):95−99.
ZHANG Hua. Study on microelement in No. 9 coal seam of Gequan Mine[J]. Coal and Chemical Industry,2019,42(3):95−99.
|
[37] |
DAI S F,XIE P P,WARD C R,et al. Anomalies of rare metals in Lopingian super-high-organic-sulfur coals from the Yishan Coalfield,Guangxi,China[J]. Ore Geology Reviews,2017,88:235−250. doi: 10.1016/j.oregeorev.2017.05.007
|
[38] |
DU F P,NING S Z,QIAO J W,et al. Geochemical and mineralogical characteristics of the Li-Sr-enriched coal in the Wenjiaba mine,Guizhou,SW China[J]. ACS Omega,2021,6(13):8816−8828. doi: 10.1021/acsomega.0c05663
|
[39] |
WANG P P,YAN X Y,GUO W M,et al. Geochemistry of trace elements in coals from the Yueliangtian Mine,western Guizhou,China:abundances,modes of occurrence,and potential industrial utilization[J]. Energy & Fuels,2016,30(12):10268−10281.
|
[40] |
孙蓓蕾,曾凡桂,李美芬,等. 西山煤田马兰矿区8号煤及其夹矸的微量与稀土元素地球化学特征[J]. 煤炭学报,2010,35(1):110−116.
SUN Beilei,ZENG Fangui,LI Meifen,et al. Geochemistry characteristics of trace elements & rare earth elements(REEs) of No. 8 coal and parting in Malan Coal Mine,Xishan Coalfield[J]. Journal of China Coal Society,2010,35(1):110−116.
|
[41] |
SUN R Y,LIU G J,ZHENG L G,et al. Characteristics of coal quality and their relationship with coal-forming environment:a case study from the Zhuji exploration area,Huainan Coalfield,Anhui,China[J]. Energy,2010,35(1):423−435. doi: 10.1016/j.energy.2009.10.009
|
[42] |
YANG J Y. Concentration and distribution of uranium in Chinese coals[J]. Energy,2007,32(3):203−212. doi: 10.1016/j.energy.2006.04.012
|
[43] |
陈利敏,郭爱军,李焕同,等. 中国主要成煤期原型盆地类型划分[C]//2014年中国地球科学联合学术年会——专题57:盆地动力学与非常规能源论文集. 北京:2014:2527−2530.
CHEN Limin,GUO Aijun,LI Huantong,et al. Classification of prototype basin types of main coal-forming period in China [C]//2014 China Earth Science Joint Annual Conference - Topic 57:Proceedings on Basin Dynamics and Unconventional Energy. Beijing:2014:2527−2530.
|
[44] |
HOROVITZ C T,SCHOCK H H,HOROVITZ-KISIMOVA L A. The content of scandium,thorium,silver,and other trace elements in different plant species[J]. Plant and Soil,1974,40(2):397−403. doi: 10.1007/BF00011522
|
[45] |
REIMANN C,DE CARITAT P. Chemical elements in the environment:factsheets for the geochemist and environmental scientist[M]. Berlin:Springer,1998:1−398.
|
[46] |
陈文敏,丁 华,傅 丛. 中国中生代晚三叠世煤的资源分布与煤质特征[J]. 煤质技术,2021,36(1):27−35.
CHEN Wenmin,DING Hua,FU Cong. Resource distribution and coal quality characteristics of Mesozoic Late Triassic coal in China[J]. Coal Quality Technology,2021,36(1):27−35.
|
[47] |
DAI S F,CHEKRYZHOV I Y,SEREDIN V V,et al. Metalliferous coal deposits in East Asia (Primorye of Russia and South China):a review of geodynamic controls and styles of mineralization[J]. Gondwana Research,2016,29(1):60−82. doi: 10.1016/j.gr.2015.07.001
|
[48] |
DAI S F,ARBUZOV S,CHEKRYZHOV I,et al. Metalliferous coals of Cretaceous age:a review[J]. Minerals,2022,12(9):1154. doi: 10.3390/min12091154
|
[49] |
秦国红,刘 亢,徐 浩,等. 鄂尔多斯盆地西缘煤中微量元素共生组合特征[J]. 中国煤炭地质,2015,27(7):1−6,18.
QIN Guohong,LIU Kang,XU Hao,et al. Paragenetic association features of trace elements in coals in western margin of Ordos Basin[J]. Coal Geology of China,2015,27(7):1−6,18.
|
[50] |
邵 凯. 中国东北地区早白垩世层序地层与聚煤规律研究[D]. 北京:中国矿业大学(北京),2013:24-25.
SHAO Kai. Sequence stratigraphy and coal accumulation of the Early Cretaceous in northeastern China[D]. Beijing:China University of Mining & Technology,Beijing, 2013:24-25.
|
[51] |
DAI S F,FINKELMAN R B,FRENCH D,et al. Modes of occurrence of elements in coal:a critical evaluation[J]. Earth-Science Reviews,2021,222:103815. doi: 10.1016/j.earscirev.2021.103815
|
[52] |
QUEROL X,KLIKA Z,WEISS Z,et al. Determination of element affinities by density fractionation of bulk coal samples[J]. Fuel,2001,80(1):83−96. doi: 10.1016/S0016-2361(00)00059-4
|
[53] |
王淑芬. 应用统计学[M]. 北京:北京林业出版社,北京大学出版社,2007:1-387.
|
[54] |
王文峰,秦 勇,宋党育,等. 安太堡矿区11号煤层的元素地球化学及其洗选洁净潜势研究[J]. 中国科学(D辑:地球科学),2005,35(10):963−972.
WANG Wenfeng,QIN Yong,SONG Dangyu,et al. Study on element geochemistry and cleaning potential of No. 11 coal seam in Antaibao Mining Area[J]. Science in China,Ser D,2005,35(10):963−972.
|
[55] |
马小敏. 黄县盆地古近系煤中元素地球化学特征及其沉积环境指示意义[J]. 科学技术与工程,2019,19(24):46−55.
MA Xiaomin. Geochemistry characteristics and sedimentary environment indicating significances of elements in Paleogene coal from Huangxian Basin[J]. Science Technology and Engineering,2019,19(24):46−55.
|
[56] |
覃 轩. 大同煤田煤中微量元素富集特征及共生关系成因研究[J]. 煤炭科学技术,2019,47(11):189−195.
QIN Xuan. Study on enrichment characteristics of trace elements and genesis of symbiotic relationship of coal in Datong Coalfield[J]. Coal Science and Technology,2019,47(11):189−195.
|
[57] |
宋昌贵,刘东娜,赵峰华,等. 霍西煤田不同密度煤中常微量元素地球化学特征[J]. 煤炭学报,2018,43(S1):253−261.
SONG Changgui,LIU Dongna,ZHAO Fenghua,et al. Major and trace elements geochemistry of different density coal samples from Huoxi Coalfield[J]. Journal of China Coal Society,2018,43(S1):253−261.
|
[58] |
刘桂建,杨萍玥,彭子成,等. 淄博煤田共生腐泥煤与腐植煤化学组成对比[J]. 地质地球化学,2003,31(1):23−27.
LIU Guijian,YANG Pingyue,PENG Zicheng,et al. Comparative study of chemical composition of paragenetic sapropelic coal and humic coal from Zibo Coalfield[J]. Earth and Environment,2003,31(1):23−27.
|
[59] |
杨林健. 贵州务川玉带煤矿煤中微量元素垂向分布特征分析[J]. 冶金与材料,2020,40(3):28−29.
YANG Linjian. Analysis on vertical distribution characteristics of trace elements in coal of Yudai Coal Mine in Wuchuan,Guizhou[J]. Metallurgy and Materials,2020,40(3):28−29.
|
[60] |
梁虎珍,曾凡桂,相建华,等. 伊敏褐煤中微量元素的地球化学特征及其无机–有机亲和性分析[J]. 燃料化学学报,2013,41(10):1173−1183.
LIANG Huzhen,ZENG Fangui,XIANG Jianhua,et al. Geochemical characteristics and inorganic-organic affinity of the trace elements in Yimin lignite[J]. Journal of Fuel Chemistry and Technology,2013,41(10):1173−1183.
|
[61] |
LI J,ZHUANG X G,QUEROL X,et al. New data on mineralogy and geochemistry of high-Ge coals in the Yimin Coalfield,Inner Mongolia,China[J]. International Journal of Coal Geology,2014,125:10−21. doi: 10.1016/j.coal.2014.01.006
|
[62] |
王文峰,秦 勇,姜 波,等. 鄂尔多斯盆地北缘—晋北区煤中微量元素赋存特征及其洁净潜势[J]. 地质学报,2004,78(4):499.
WANG Wenfeng,QIN Yong,JIANG Bo,et al. Occurrence characteristics and clean potential of trace elements in coal from northern margin of Ordos Basin to northern Shanxi Province[J]. Acta Geologica Sinica,2004,78(4):499.
|
[63] |
庄新国,龚家强,曾荣树,等. 赣东北晚二叠和晚三叠煤的微量元素对比研究[J]. 中国煤田地质,2001,13(3):15−17,32.
ZHUANG Xinguo,GONG Jiaqiang,ZENG Rongshu,et al. Contrast research on trace elements of Late Permian and Late Triassic coals in north-eastern Jiangxi Province[J]. Coal Geology of China,2001,13(3):15−17,32.
|
[64] |
庄新国,龚家强,王占岐,等. 贵州六枝、水城煤田晚二叠世煤的微量元素特征[J]. 地质科技情报,2001,20(3):53−58.
ZHUANG Xinguo,GONG Jiaqiang,WANG Zhanqi,et al. Trace elements characteristics of the Late Permian coal in the Shuicheng and Liuzhi coal fields,Guizhou[J]. Geological Science and Technology Information,2001,20(3):53−58.
|
[65] |
李薇薇,唐跃刚,邓秀杰,等. 湖南辰溪高有机硫煤的微量元素特征[J]. 煤炭学报,2013,38(7):1227−1233.
LI Weiwei,TANG Yuegang,DENG Xiujie,et al. Geochemistry of the trace elements in the high-organic-sulfur coals from Chenxi Coalfield[J]. Journal of China Coal Society,2013,38(7):1227−1233.
|
[66] |
胡志丹. 南桐矿5号煤层若干微量元素地球化学特征及洁净煤的意义[J]. 西部探矿工程,2022,34(9):131−135.
HU Zhidan. Geochemical characteristics of some trace elements in No. 5 coal seam of Nantong Mine and the significance of clean coal[J]. West-China Exploration Engineering,2022,34(9):131−135.
|
[67] |
YUAN Y,TANG S H,ZHANG S H,et al. Mineralogical and geochemical characteristics of trace elements in the Yongdingzhuang Mine,Datong Coalfield,Shanxi Province,China[J]. Minerals,2018,8(7):297. doi: 10.3390/min8070297
|
[68] |
樊金串,樊民强. 煤中微量元素间依存关系的聚类分析[J]. 燃料化学学报,2000,28(2):157−161.
FAN Jinchuan,FAN Minqiang. Cluster analysis of dependence relationship of trace elements in coal[J]. Journal of Fuel Chemistry and Technology,2000,28(2):157−161.
|
[69] |
LI J,ZHUANG X G,YUAN W,et al. Mineral composition and geochemical characteristics of the Li-Ga-rich coals in the Buertaohai-Tianjiashipan mining district,Jungar Coalfield,Inner Mongolia[J]. International Journal of Coal Geology,2016,167:157−175. doi: 10.1016/j.coal.2016.09.018
|
[70] |
杨建业,张卫国,屈联莹. 不同煤级的微量元素酸脱除率初探[J]. 煤炭学报,2018,43(2):519−528.
YANG Jianye,ZHANG Weiguo,QU Lianying. Preliminary study on the acid removal rate of element in the different rank of coal[J]. Journal of China Coal Society,2018,43(2):519−528.
|
[71] |
段飘飘,王文峰,马萌芽. 乌兰图嘎富锗煤中微量元素在不同密度级煤中的分布特征[J]. 煤田地质与勘探,2022,50(11):125−133.
DUAN Piaopiao,WANG Wenfeng,MA Mengya. Distribution characteristics of trace elements in different density fractions of high-germanium coal from Wulantuga,Inner Mongolia,China[J]. Coal Geology & Exploration,2022,50( 11):125−133.
|
[72] |
杨瑞瑛. 山东煤矿样中微量元素的分布[J]. 现代仪器,2007,13(6):21−24.
YANG Ruiying. Distribution of trace element in samples from coal mines in Shandong[J]. Modern Instruments,2007,13(6):21−24.
|
[73] |
ZHENG Q M,SHI S L,LIU Q F,et al. Modes of occurrences of major and trace elements in coals from Yangquan Mining District,North China[J]. Journal of Geochemical Exploration,2017,175:36−47. doi: 10.1016/j.gexplo.2016.12.008
|
[74] |
ZHAO Cunliang,LIU Bangjun,XIAO Lin,et al. Significant enrichment of Ga,Rb,Cs,REEs and Y in the Jurassic No. 6 coal in the Iqe Coalfield,northern Qaidam Basin,China:a hidden gem[J]. Ore Geology Reviews,2017,83:1−13. doi: 10.1016/j.oregeorev.2016.12.012
|
[75] |
DAI S F,ZOU J H,JIANG Y F,et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine,Daqingshan Coalfield,Inner Mongolia,China:Modes of occurrence and origin of diaspore,gorceixite,and ammonian illite[J]. International Journal of Coal Geology,2012,94:250−270. doi: 10.1016/j.coal.2011.06.010
|
[76] |
杨建业,狄永强,张卫国,等. 伊犁盆地ZK0161井褐煤中铀及其它元素的地球化学研究[J]. 煤炭学报,2011,36(6):945−952.
YANG Jianye,DI Yongqiang,ZHANG Weiguo,et al. Geochemistry study of its uranium and other element of brown coal of ZK0161 well in Yili Basin[J]. Journal of China Coal Society,2011,36(6):945−952.
|
[77] |
刘桂建,彭子成,杨萍玥,等. 煤中微量元素富集的主要因素分析[J]. 煤田地质与勘探,2001,29(4):1−4.
LIU Guijian,PENG Zicheng,YANG Pingyue,et al. Analysis of the main factors controlling concentration of trace element in coal[J]. Coal Geology & Exploration,2001,29(4):1−4.
|
[78] |
任德贻. 煤的微量元素地球化学[M]. 北京:科学出版社,2006:1−556.
|
[79] |
代世峰,任德贻,周义平,等. 煤中微量元素和矿物富集的同沉积火山灰与海底喷流复合成因[J]. 科学通报,2008,53(24):3123−3129.
DAI Shifeng,REN Deyi,ZHOU Yiping,et al. The combined cause of synsedimentary volcanic ash and submarine jet rich in trace elements and minerals in coal[J]. Chinese Science Bulletin,2008,53(24):3123−3129.
|
[80] |
ZHOU Y P,BOHOR B F,REN Y L. Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces,China[J]. International Journal of Coal Geology,2000,44(3/4):305−324.
|
[81] |
刘英俊,曹励明,李兆麟,等. 元素地球化学[M]. 北京:科学出版社,1984:1−548.
|
[82] |
陶旭云,王佳新,孙 嘉,等. 钪矿床主要类型与成矿机制[J]. 矿床地质,2019,38(5):1023−1038.
TAO Xuyun,WANG Jiaxin,SUN Jia,et al. Main types and metallogenic mechanism of scandium deposits[J]. Mineral Deposits,2019,38(5):1023−1038.
|
[83] |
DAI S F,WANG P P,WARD C R,et al. Elemental and mineralogical anomalies in the coal-hosted Ge ore deposit of Lincang,Yunnan,southwestern China:Key role of N2–CO2-mixed hydrothermal solutions[J]. International Journal of Coal Geology,2015,152:19−46. doi: 10.1016/j.coal.2014.11.006
|
[84] |
陶振鹏,杨瑞东,程 伟,等. 贵州贞丰龙头山煤矿晚三叠世煤的元素地球化学特征及富集成因分析[J]. 中国煤炭,2015,41(4):45−50.
TAO Zhenpeng,YANG Ruidong,CHENG Wei,et al. Analysis on element geochemical characteristics and enrichment causes of the Late Triassic coal in Longtoushan Coal Mine in Zhenfeng County in Guizhou Province[J]. China Coal,2015,41(4):45−50.
|
[85] |
陶振鹏,杨瑞东,程 伟,等. 贵州普安—晴隆矿区晚二叠世煤及煤灰中伴生元素的富集特征[J]. 煤田地质与勘探,2017,45(4):44−51.
TAO Zhenpeng,YANG Ruidong,CHENG Wei,et al. Enrichment characteristics of associated elements of Late Permian coal and coal ash from Pu’an and Qinglong coal mining area in Guizhou Province[J]. Coal Geology & Exploration,2017,45(4):44−51.
|
[86] |
LIU J J,DAI S F,SONG H J,et al. Geological factors controlling variations in the mineralogical and elemental compositions of Late Permian coals from the Zhijin-Nayong Coalfield,western Guizhou,China[J]. International Journal of Coal Geology,2021,247:103855. doi: 10.1016/j.coal.2021.103855
|
[87] |
XIAO L,ZHAO B,DUAN P P,et al. Geochemical characteristics of trace elements in the No. 6 coal seam from the Chuancaogedan mine,Jungar coalfield,Inner Mongolia,China[J]. Minerals,2016,6(2):28. doi: 10.3390/min6020028
|
[88] |
CHEN J,CHEN P,YAO D X,et al. Mineralogy and geochemistry of Late Permian coals from the Donglin Coal Mine in the Nantong Coalfield in Chongqing,southwestern China[J]. International Journal of Coal Geology,2015,149:24−40. doi: 10.1016/j.coal.2015.06.014
|
[89] |
HAYASHI K I,FUJISAWA H,HOLLAND H D,et al. Geochemistry of approximately 1.9 Ga sedimentary rocks from northeastern Labrador,Canada[J]. Geochimica et Cosmochimica Acta,1997,61(19):4115−4137. doi: 10.1016/S0016-7037(97)00214-7
|
[90] |
王文祥,张 雷,李爱民. 废弃生物质水热腐植化产物与介质酸碱性响应关系[J]. 大连理工大学学报,2022,62(1):9−17.
WANG Wenxiang,ZHANG Lei,LI Aimin. Response relationship of hydrothermal humification products of waste biomass with acid-base property of medium[J]. Journal of Dalian University of Technology,2022,62(1):9−17.
|
[91] |
LI B Q,ZHUANG X,QUEROL X,et al. Geological controls on the distribution of REY-Zr (Hf)-Nb (Ta) enrichment horizons in Late Permian coals from the Qiandongbei Coalfield,Guizhou Province,SW China[J]. International Journal of Coal Geology,2020,231:103604. doi: 10.1016/j.coal.2020.103604
|
[92] |
YI T S,QIN Y,ZHANG J,et al. Matter composition and two stage evolution of a Liangshan super high-sulfur coal seam in Kaili,eastern Guizhou[J]. Journal of China University of Mining and Technology,2007,17(2):158−163. doi: 10.1016/S1006-1266(07)60063-7
|
[93] |
庄新国,杨生科,曾荣树,等. 中国几个主要煤产地煤中微量元素特征[J]. 地质科技情报,1999,18(3):63−66.
ZHUANG Xinguo,YANG Shengke,ZENG Rongshu,et al. Characteristics of trace elements in coals from several main coal districts in China[J]. Geological Science and Technology Information,1999,18(3):63−66.
|
[94] |
王随继,黄杏珍,妥进才,等. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J]. 沉积学报,1997,15(1):65−70.
WANG Suiji,HUANG Xingzhen,TUO Jincai,et al. Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan formation,Biyang depression[J]. Acta Sedimentologica Sinica,1997,15(1):65−70.
|
[95] |
DAI S F,JIANG Y F,WARD C R,et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine,Inner Mongolia,China:Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield[J]. International Journal of Coal Geology,2012,98:10−40. doi: 10.1016/j.coal.2012.03.003
|
[96] |
JIANG Y F,ZHAO L,ZHOU G Q,et al. Petrological,mineralogical,and geochemical compositions of Early Jurassic coals in the Yining Coalfield,Xinjiang,China[J]. International Journal of Coal Geology,2015,152:47−67. doi: 10.1016/j.coal.2015.07.011
|
[97] |
DAI S F,LI D,CHOU C L,et al. Mineralogy and geochemistry of boehmite-rich coals:New insights from the Haerwusu Surface Mine,Jungar Coalfield,Inner Mongolia,China[J]. International Journal of Coal Geology,2008,74(3/4):185−202.
|
[98] |
HOWER J,EBLE C,O’KEEFE J,et al. Petrology,palynology,and geochemistry of gray hawk coal (Early Pennsylvanian,Langsettian) in eastern Kentucky,USA[J]. Minerals,2015,5(3):592−622. doi: 10.3390/min5030511
|
[99] |
SEREDIN V V. Rare earth element-bearing coals from the Russian Far East deposits[J]. International Journal of Coal Geology,1996,30(1/2):101−129.
|
[100] |
SUN B L,ZENG F G,MOORE T A,et al. Geochemistry of two high-lithium content coal seams,Shanxi Province,China[J]. International Journal of Coal Geology,2022,260:104059. doi: 10.1016/j.coal.2022.104059
|
[101] |
冯 凯,肖仪武,李 磊. 钪的地球化学行为与资源类型[J]. 有色金属(选矿部分),2021(6):6−16,26.
FENG Kai,XIAO Yiwu,LI Lei. Geochemical behavior and resource types of scandium[J]. Nonferrous Metals (Mineral Processing Section),2021(6):6−16,26.
|
[102] |
ZHAO L,DAI S F,NECHAEV V P,et al. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield,southeastern Qinshui Basin,Northern China[J]. Ore Geology Reviews,2019,115:103184. doi: 10.1016/j.oregeorev.2019.103184
|
[103] |
魏迎春,华芳辉,何文博,等. 峰峰矿区2号煤中微量元素富集特征差异性研究[J]. 煤炭学报,2020,45(4):1473−1487.
WEI Yingchun,HUA Fanghui,HE Wenbo,et al. Difference of trace elements characteristics of No. 2 coal in Fengfeng mining area[J]. Journal of China Coal Society,2020,45(4):1473−1487.
|
[104] |
SEREDIN V V,DAI S F. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology,2012,94:67−93. doi: 10.1016/j.coal.2011.11.001
|
[105] |
DAI S F,REN D Y. Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng–Handan Coalfield,Hebei,China[J]. Energy & Fuels,2007,21(3):1663−1673.
|
[106] |
王运泉,莫洁云,任德贻. 梅田矿区岩浆热变煤中微量元素分布特征[J]. 地球化学,1999,28(3):289−296.
WANG Yunquan,MO Jieyun,REN Deyi. Distribution of minor and trace elements in magmatic hydrothermal metamorphic coal of Meitian Coal Mine,Hunan Province[J]. Geochimica,1999,28(3):289−296.
|
[107] |
ZHANG B F,CHEN J,SHA J D,et al. Geochemistry of coal thermally-altered by igneous intrusion:a case study from the Pansan Coal Mine of Huainan Coalfield,Anhui,Eastern China[J]. Journal of Geochemical Exploration,2020,213:106532. doi: 10.1016/j.gexplo.2020.106532
|
[108] |
ZHUANG X G,SU S C,XIAO M G,et al. Mineralogy and geochemistry of the Late Permian coals in the Huayingshan coal-bearing area,Sichuan Province,China[J]. International Journal of Coal Geology,2012,94:271−282. doi: 10.1016/j.coal.2012.01.002
|
[109] |
DAI S F,LUO Y B,SEREDIN V V,et al. Revisiting the Late Permian coal from the Huayingshan,Sichuan,southwestern China:Enrichment and occurrence modes of minerals and trace elements[J]. International Journal of Coal Geology,2014,122:110−128. doi: 10.1016/j.coal.2013.12.016
|
[110] |
WANG X B,DAI S F,CHOU C L,et al. Mineralogy and geochemistry of Late Permian coals from the Taoshuping Mine,Yunnan Province,China:Evidences for the sources of minerals[J]. International Journal of Coal Geology,2012,96:49−59.
|
[111] |
代世峰,刘池洋,赵 蕾,等. 煤系中战略性金属矿产资源:意义和挑战[J]. 煤炭学报,2022,47(5):1743−1749.
DAI Shifeng,LIU Chiyang,ZHAO Lei,et al. Strategic metal resources in coal-bearing strata:Significance and challenges[J]. Journal of China Coal Society,2022,47(5):1743−1749.
|
[112] |
SEREDIN V V. Metalliferous coals:formation conditions and outlooks for development[J]. Coal Resources of Russia,2004,6:453−519.
|