Advance Search
WEI Bo,YANG Shuguang,LI Xin,et al. Conception of coordinated development technology system for coalbed methane and underground coal gasification in inclined coal seams[J]. Coal Science and Technology,2024,52(5):152−165. DOI: 10.12438/cst.2024-0265
Citation: WEI Bo,YANG Shuguang,LI Xin,et al. Conception of coordinated development technology system for coalbed methane and underground coal gasification in inclined coal seams[J]. Coal Science and Technology,2024,52(5):152−165. DOI: 10.12438/cst.2024-0265

Conception of coordinated development technology system for coalbed methane and underground coal gasification in inclined coal seams

Funds: 

Tianshan Talents Program of Xinjiang Uygur Autonomous Region (2023TSYCLJ0005, 2022TSYCLJ0021)

More Information
  • Received Date: February 29, 2024
  • Available Online: May 15, 2024
  • Coalbed methane (CBM) development and underground coal gasification (UCG) are important sources for coal-based natural gas production in China, and coal and CBM resources are abundant in the inclined coalbed development area of the Xinjiang foreland thrust belt. To deeply analyze the feasibility of coordinated development of CBM and UCG in inclined coal seams, the existing key technologies of CBM and UCG and their significances for coordinated development of CBM- UCG was systematically analyzed, the advantages, the technical routes, major problems and future research directions of coordinated development of CBM and UCG in inclined coal seams were also elaborated, the major problems faced and the direction of future research were proposed, and the following understanding was obtained. ① The coordinated development of CBM-UCG under the “CBM development dredging effect”, “UCG thermal desorption effect”, and “UCG mining pressure releasing effect” can form a virtuous cycle of mutual promotion. ② The coordinated development technology routes was proposed, such as vertical wells + inclined well along coal seam with “first drainage and then gasification”, multiple inclined wells along the coal seam with “simultaneous drainage and gasification”, directional L-typed CBM wells + UCG wells along the coal seam direction with “simultaneous gasification and drainage”, UCG wells along inclined wells in the lower coal + directional L-typed CBM wells in the upper coal seam with “first drainage, then gasification, and then drainage again”, and the “well factory” arrangement of complex well type. ③ The coordinated development of CBM and UCG faces theoretical issues such as weak theoretical foundation research on geological constituency evaluation, unclear expansion range of UCG thermal action under the condition of fracture network, and the undetermined range of rock movement and pressure relief in the UCG process of inclined coal seams. It also faces the engineering issues such as coordinated development of CBM-UCG “well factory” drilling technology, coordinated development of CBM wells and UCG wells production system, coordinated development of CBM and UCG wells geodynamic measurement and control, and the sealing and high-temperature-resistant protection of CBM wells. ④ It is necessary to strengthen the study on the evaluation of geological site selection for the coordinated development of CBM and UCG in inclined coal seams, the theoretical research on the development dynamics, and the pioneering experimental study on engineering coordination technology, so as to ensure that the coordinated development is safe, orderly, controllable and efficient.

  • [1]
    许 浩,陈艳鹏,辛福东,等. 煤炭地下气化面临的挑战与技术对策[J]. 煤炭科学技术,2022,50(1):265−274. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201027

    XU Hao,CHEN Yanpeng,XIN Fudong,et al. Challenges faced by underground coal gasification and technical countermeasures[J]. Coal Science and Technology,2022,50(1):265−274. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201027
    [2]
    李怀展,唐 超,郭广礼,等. 热力耦合作用下煤炭地下气化地表沉陷预测方法[J]. 煤炭科学技术,2023,51(10):242−251. doi: 10.12438/cst.2023-0986

    LI Huaizhan,TANG Chao,GUO Guangli,et al. Prediction method of surface subsidence due to underground coal gasification under thermal coupling[J]. Coal Science and Technology,2023,51(10):242−251. doi: 10.12438/cst.2023-0986
    [3]
    东 振,任 博,陈艳鹏,等. 中深层煤炭地下气化的气化腔安全宽度计算方法[J]. 煤炭科学技术,2024,52(2):183−193.

    DONG Zhen,REN Bo,CHEN Yanpeng,et al. Calculation method of safe width of gasification cavity for medium-deep underground coal gasification[J]. Coal Science and Technology,2024,52(2):183−193.
    [4]
    张金华,张梦媛,陈艳鹏,等. 煤炭地下气化现场试验进展与启示[J]. 煤炭科学技术,2022,50(2):213−222.

    ZHANG Jinhua,ZHANG Mengyuan,CHEN Yanpeng,et al. Progresses and Revelation of Underground Coal Gasification Field Test[J]. Coal Science and Technology,2022,50(2):213−222.
    [5]
    刘淑琴,刘 欢,纪雨彤,等. 深部煤炭地下气化制氢碳排放核算及碳减排潜力分析[J]. 煤炭科学技术,2023,51(1):531−541.

    LIU Shuqin,LIU Huan,JI Yutong,et al. Carbon emission accounting and carbon reduction analysis for deep coal underground gasification to hydrogen[J]. Coal Science and Technology,2023,51(1):531−541.
    [6]
    李瑞明,周梓欣. 新疆煤层气产业发展现状与思考[J]. 煤田地质与勘探,2022,50(3):23−29.

    LI Ruiming,ZHOU Zixin. Current situation and thoughts on the development of coalbed methane industry in Xinjiang[J]. Coal Geology & Exploration,2022,50(3):23−29.
    [7]
    XIN Lin,WANG Zuotang,WANG Gang,et al. Technological aspects for underground coal gasification in steeply inclined thin coal seams at Zhongliangshan coal mine in China[J]. Fuel,2017,191:486−494. doi: 10.1016/j.fuel.2016.11.102
    [8]
    周 贺. 煤炭地下气化地质选区主控因素及产气潜力评价-以黔西松河井田为例[D]. 徐州:中国矿业大学,2022.

    ZHOU He. Evaluation of the main controlling factors and gas production potential of coal underground gasification geological zoning-taking Qianxi Songhe well field as an example[D]. Xuzhou:China University of Mining and Technology,2022.
    [9]
    康俊强. 急倾斜巨厚煤储层气/水产出模式[D]. 徐州:中国矿业大学,2021.

    KANG Junqiang. Gas/water production model of steep and extremely thick coal reservoir[D]. Xuzhou:China University of Mining and Technology,2021.
    [10]
    秦 勇,易同生,杨 磊,等. 中国煤炭地下气化现场试验探索历程与前景展望[J]. 煤田地质与勘探,2023,51(7):17−25. doi: 10.12363/issn.1001-1986.22.12.0985

    QIN Yong,YI Tongsheng,YANG Lei,et al. Exploration history and prospect of underground coal gasification field tests in China[J]. Coal Geology & Exploration,2023,51(7):17−25. doi: 10.12363/issn.1001-1986.22.12.0985
    [11]
    高德利,毕延森,鲜保安. 中国煤层气高效开发井型与钻完井技术进展[J]. 天然气工业,2022,42(6):1−18. doi: 10.3787/j.issn.1000-0976.2022.06.001

    GAO Deli,BI Yanseng,XIAN Baoan. Advances in well types and drilling and completion technologies for efficient coalbed methane development in China[J]. Natural Gas Industry,2022,42(6):1−18. doi: 10.3787/j.issn.1000-0976.2022.06.001
    [12]
    徐凤银,肖芝华,陈 东,等. 我国煤层气开发技术现状与发展方向[J]. 煤炭科学技术,2019,47(10):205−215.

    XU Fengyin,XIAO Zhihua,CHEN Dong,et al. Current situation and development direction of China’s coalbed methane development technology[J]. Coal Science and Technology,2019,47(10):205−215.
    [13]
    孔令峰,张军贤,李华启,等. 我国中深层煤炭地下气化商业化路径[J]. 天然气工业,2020,40(4):156−165. doi: 10.3787/j.issn.1000-0976.2020.04.019

    KONG Lingfeng,ZHANG Junxian,LI Huaqi,et al. Commercialization path of medium–deep underground coal gasification in China[J]. Natural Gas Industry,2020,40(4):156−165. doi: 10.3787/j.issn.1000-0976.2020.04.019
    [14]
    陈 峰,潘 霞,庞旭林. 新奥无井式煤炭地下气化试验进展及产业化规划[J]. 煤炭科学技术,2013,41(5):19−22.

    CHEN Feng,PAN Xia,PANG Xulin. Progress of Xin’ao well-less coal underground gasification test and industrialization planning[J]. Coal Science and Technology,2013,41(5):19−22.
    [15]
    秦 义,李仰民,白建梅,等. 沁水盆地南部高煤阶煤层气井排采工艺研究与实践[J]. 天然气工业,2011,31(11):22−25. doi: 10.3787/j.issn.1000-0976.2011.11.006

    QIN Yi,LI Yangming,BAI Jianmei,et al. Research and practice on discharge and recovery process of high coal-stage coalbed methane wells in the Southern Qinshui Basin[J]. Natural Gas Industry,2011,31(11):22−25. doi: 10.3787/j.issn.1000-0976.2011.11.006
    [16]
    杨 震,孔令峰,孙万军,等. 油气开采企业开展深层煤炭地下气化业务的前景分析[J]. 天然气工业,2015,35(8):99−105.

    YANG Zhen,KONG Lingfeng,HOU Qijun, et al. Prospects of underground deep-zone coal gasification performed by oil and gas production enterprises[J]. Natural Gas Industry,2015,35(8):99−105.
    [17]
    袁 亮,薛俊华,张 农,等. 煤层气抽采和煤与瓦斯共采关键技术现状与展望[J]. 煤炭科学技术,2013,41(9):6−11.

    YUAN Liang,XUE Junhua,ZHANG Nong,et al. Status and prospects of key technologies for coalbed methane extraction and coal and gas co-mining[J]. Coal Science and Technology,2013,41(9):6−11.
    [18]
    张 群,葛春贵,李 伟,等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报,2018,43(1):150−159.

    ZHANG Qun,GE Chungui,LI Wei,et al. High-efficiency extraction model of coalbed methane by segmental fracturingof horizontal wells at the top of fractured soft and low-permeability coal beds[J]. Journal of China Coal Society,2018,43(1):150−159.
    [19]
    孙东玲,梁运培,黄旭超,等. 新疆大倾角多煤组煤矿区煤层气开发利用进展与前景[J]. 煤炭科学技术,2023,51(S1):162−172.

    SUN Donglin,LIANG Yunpei,HUANG Xuchao,et al. Progress and prospects of coalbed methane development and utilization in coal mining areas of large dipping multi-coal groups in Xinjiang[J]. Coal Science and Technolgy,2023,51(S1):162−172.
    [20]
    李国富,张遂安,季长江,等. 煤矿区煤层气“四区联动”井上下联合抽采模式与技术体系[J]. 煤炭科学技术,2022,50(12):14−25.

    LI Guofu,ZHANG Suian,JI Changjiang,et al. Coalbed methane “four-zone linkage” uphole-downhole joint extraction model and technology system in coal mine area[J]. Coal Science and Technology,2022,50(12):14−25.
    [21]
    孟召平,李国富,田永东,等. 晋城矿区废弃矿井采空区煤层气地面抽采研究进展[J]. 煤炭科学技术,2022,50(1):204−211.

    MENG Zhaoping,LI Guofu,TIAN Yongdong,et al. Research progress of coalbed methane surface extraction from abandoned mine shafts in Jincheng Mining Area[J]. Coal Science and Technology,2022,50(1):204−211.
    [22]
    周显俊,李国富,李 超,等. 煤矿采空区煤层气地面开发技术及工程应用−以沁水盆地晋城矿区为例[J]. 煤田地质与勘探,2022,50(5):66−72.

    ZHOU Xianjun,LI Guofu,LI Chao,et al. Surface development technology and engineering application of coalbed methane in coal mining airspace-an example of Jincheng mining area in Qingshui Basin[J]. Coal Geology & Exploration,2022,50(5):66−72.
    [23]
    杨新乐. 低渗透煤层煤层气注热增产机理的研究[D]. 阜新:辽宁工程技术大学,2009.

    YANG Xinle. Study on mechanism of injection heat increasing production in coal-bed gas of low permeability coal seam[D]. Fuxin:Liaoning Technical University,2009.
    [24]
    杨兆中,袁健峰,朱静怡,等. 煤层气注热增产研究进展[J]. 油气藏评价与开发,2022,12(4):617−625.

    YANG Zhaozhong,YUAN Jianfeng,ZHU Jingyi,et al. Thermal injection stimulation to enhance coalbed methane recovery[J]. Petroleum Reservoir Evaluation and Development,2022,12(4):617−625.
    [25]
    胡林杰,冯增朝,周 动,等. 煤层气原位注热开采的数值模拟研究及工程实践[J]. 煤炭学报,2023,48(12):4473−4486.

    HU Linjie,FENG Zengchao,ZHOU Dong,et al. Numericalsimulation study and engineering practice of in-situ heat injection mining of coalbed methane[J]. Journal of China Coal Society,2023,48(12):4473−4486.
    [26]
    LI Xin,TIAN Jijun,JU Yiwen,et al. Permeability variations of lignite and bituminous coals under elevated pyrolysis temperatures (35-600 °C):an experimental study[J]. Energy,2022,254:124187. doi: 10.1016/j.energy.2022.124187
    [27]
    白志豪,陈 浩,韦 波,等. 吐哈盆地褐煤的热解和燃烧特性及动力学分析[J]. 煤炭转化,2023,46(5):21−30.

    BAI Zhihao,CHEN Hao,WEI Bo,et al. Pyrolysis and combustion characterization and kinetic analysis of lignite in the Tuha Basin[J]. Coal Conversion,2023,46(5):21−30.
    [28]
    万志军,冯子军,赵阳升,等. 高温三轴应力下煤体弹性模量的演化规律[J]. 煤炭学报,2011,36(10):1736−1740.

    WAN Zhijun,FENG Zijun,ZHAO Yangsheng,et al. Elastic modulus’s evolution law of coal under high temperature and triaxial stress[J]. Journal of China Coal Society,2011,36(10):1736−1740.
    [29]
    王芦笛. 低渗煤层气注热开采渗透规律研究[J]. 煤矿安全,2017,48(4):5−8.

    WANG Ludi. Study on seepage laws in coal bed methane mining through injecting thermal in low permeability coal seam[J]. Safety in Coal Mines,2017,48(4):5−8.
    [30]
    胡林杰,冯增朝,周 动,等. 注热强化煤层气抽采的试验研究及工业应用[J]. 煤炭科学技术,2022,50(12):194−205.

    HU Linjie,FENG Zengchao,ZHOU Dong,et al. Experimental study and industrial application of heat injection for enhanced coalbed methane extraction[J]. Coal Science and Technology,2022,50(12):194−205.
    [31]
    杨 潇. 煤炭地下气化过程的热−流−固−化(THMC)耦合模型与特征场演变规律[D]. 徐州:中国矿业大学,2023.

    YANG Xiao. Chemical (THMC) coupled mathematical model and evolution law of the characteristic field in underground coal gasification[D]. Xuzhou:China University of Mining and Technology,2023.
    [32]
    陆银龙,王连国,唐芙蓉,等. 煤炭地下气化过程中温度−应力耦合作用下燃空区覆岩裂隙演化规律[J]. 煤炭学报,2012,37(8):1292−1298.

    LU Yinlong,WANG Lianguo,TANG Furong,et al. Rift evolution of overburden rocks in the combustion air zone undertemperature-stress coupling in the coal underground gasification process[J]. Journal of China Coal Society,2012,37(8):1292−1298.
    [33]
    刘建明. 煤炭地下气化燃空区扩展及顶板稳定性研究[D]. 徐州:中国矿业大学,2014.

    LIU Jianming. Study on the combustion cavity growth and stability of the roof during underground coal gasification[D]. Xuzhou:China University of Mining and Technology,2014.
    [34]
    辛 林. 马蹄沟煤矿地下气化开采覆岩移动规律研究[D]. 徐州:中国矿业大学,2014.

    XIN Lin. Study on the movement law of overburden rock inunderground gasification mining of Hashogou coal mine[D]. Xuzhou:China University of Mining and Technology,2014.
    [35]
    黄温钢,王作棠,夏元平,等. 煤炭地下气化热-力耦合作用下条带开采数值模拟研究[J]. 煤炭科学技术,2022,50(8):16−23.

    HUANG Wengang,WANG Zuotang,XIA Yuanping,et al. Numerical simulation of strip mining under thermal-mechanicalcoupling of underground coal gasification[J]. Coal Science and Technology,2022,50(8):16−23.
    [36]
    顾 斌. 热力耦合作用下岩体物理力学特性及煤炭地下气化特征场研究[D]. 徐州:中国矿业大学,2021.

    GU Bin. Research on Rock Physico-mechanical properties and underground coal gasification characteristics field under thermal and mechanical coupling effect[D]. Xuzhou:China University of Mining and Technology,2021.
    [37]
    刘潇鹏,郭广礼,董志勇,等. 高温-热学参数耦合效应下地下气化围岩温度场扩展模拟研究[J]. 煤炭科学技术,2022,50(3):285−294.

    LIU Xiaopeng,GUO Guangli,DONG Zhiyong,et al. Simulation study on temperature field expansion of surrounding rock in underground coal gasification considering coupling effectof high temperature-thermal parameters[J]. Coal Science and Technology,2022,50(3):285−294.
    [38]
    赵明东. 煤炭地下气化覆岩温度和裂隙的试验与数值模拟研究[D]. 北京:中国矿业大学(北京),2017.

    ZHAO Mingdong. Research on the Experiment and numerical simulation of temperature and fracture in overlying strata in UCG[D]. Beijing:China University of Mining and Technology−Beijing,2017.
    [39]
    秦 勇,易同生,汪凌霞,等. 面向项目风险控制的煤炭地下气化地质条件分析[J]. 煤炭学报,2023,48(1):290−306.

    QIN Yong,YI Tongsheng,WANG Lingxia,et al. Analysis of geological conditions for risk control of UCG projects[J]. Journal of China Coal Society,2023,48(1):290−306.
    [40]
    钱鸣高,缪协兴,许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报,1996,21(3):225−230.

    QIAN Minggao,MIU Xiexing,XU Jialin. Theoretical study of key stratum in ground control[J]. Journal of China Coal Society,1996,21(3):225−230.
    [41]
    余 力,刘淑琴. 关于煤炭地下气化新工艺LLTS-UCG实现商业化应用的思考[J]. 科技导报,2003,21(2):51−54.

    YU Li,LIU Shuqing. Reflections on the commercialization of LLTS-UCG,a new process for underground coal gasification[J]. Science & Technology Review,2003,21(2):51−54.
    [42]
    余 力. 我国废弃煤炭资源的利用:推动煤炭地下气化技术发展[J]. 煤炭科学技术,2013,41(5):1−3.

    YU Li. Utilization of waste coal resources in China-Promoting the development of underground coal gasification technology[J]. Coal Science and Technology,2013,41(5):1−3.
    [43]
    梁 杰. 煤炭地下气化技术进展[J]. 煤炭工程,2017,49(8):1−4.

    LIANG Jie. Advances in underground coal gasification technology[J]. Coal Engineering,2017,49(8):1−4.
    [44]
    李晓伟. 热作用对不同条件下甲烷解吸扩散特性的影响及机理研究[D]. 太原:太原理工大学,2022.

    LI Xiaowei. Influence and mechanism of thermal action on methane desorption-diffusion characteristics under different conditions[D]. Taiyuan:Taiyuan University of Technology,2022.
    [45]
    SARHOSIS V,LAVISS S,MOSTADE M,et al. Towards Commercializing underground coal gasification in the EU[J]. Environmental Geotechnics,2017,4(2):113−122. doi: 10.1680/jenge.15.00044
    [46]
    周福宝,夏同强,刘应科,等. 地面钻井抽采卸压煤层及采空区瓦斯的流量计算模型[J]. 煤炭学报,2010,35(10):1638−1643.

    ZHOU Fubao,XIA Tongqiang,LIU Yingke,et al. A calculation model for gas flow rates in surfaces boreholes extracting gas from pressure-relieved seams and gobs[J]. Journal of China Coal Society,2010,35(10):1638−1643.
    [47]
    BINDERMAN S,KLIMENKO A. Underground coal gasification and combustion[M]. London:Woodhead Publishing,2018.
    [48]
    刘争芬,彭 杰,闫吉曾,等. 基于油气开发工程的深部煤炭地下气化关键技术[J]. 油气与新能源,2023,35(1):77−81.

    LIU Zhengfen,PENG Jie,YAN Jiceng,et al. Key deep underground coal gasification technology based on oil and gas development projects[J]. Oil and Gas and New Energy,2023,35(1):77−81.
    [49]
    毛崎森,王长安,侯育杰,等. 富油煤原位热解对流加热过程传热规律数值模拟[J]. 洁净煤技术,2023,29(8):19−29.

    MAO Qisen,WANG Chang'an,HOU Yujie,et al. Numerical simulation of heat transfer during in-situ convection heating pyrolysis of tar-rich coal[J]. Clean Coal Technology,2023,29(8):19−29.
    [50]
    赵馨悦,韦 波,袁 亮,等. 煤储层水文地质特征及其煤层气开发意义研究综述[J]. 煤炭科学技术,2023,51(4):105−117.

    ZHAO Xinyue,WEI Bo,YUAN Liang,et al. Hydrological characters of coal reservoir and their significances on coalbed methane development:a review[J]. Coal Science and Technology,2023,51(4):105−117.
    [51]
    谢东海. 急倾斜突出煤层群煤与瓦斯共采理论及应用[D]. 湘潭:湖南科技大学,2013.

    XIE Donghai. The theory and its application on coal mining and gas extraction in outburst coal seams of steeply[D]. Xiangtan:Hunan University of Science and Technology,2013.
    [52]
    张 军,赵 琛,王建立,等. 不同倾角煤层气井的水力压裂微震监测[J]. 地球物理学进展,2021,36(3):1166−1175.

    ZHANG Jun,ZHAO Chen,WANG Jianli,et al Microseismic monitoring for hydraulic fracture of coalbeds with differentdips[J]. Progress in Geophysics,2021,36(3):1166−1175.
    [53]
    徐凤银,闫 霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14.

    XU Fengyin,YAN Xia,LIN Zhengpan,et al. Research progress and development direction of key technologies for efficient development of coalbed methane in China[J]. Coal Geology & Exploration,2022,50(3):1−14.
    [54]
    侯海海,邵龙义,唐 跃,等. 基于多层次模糊数学的中国低煤阶煤层气选区评价标准-以吐哈盆地为例[J]. 中国地质,2014,41(3):1002−1009.

    HOU Haihai,SHAO Longyi,TANG Yue,et al. Evaluation criteria of Chinese low-coal-stage coalbed methane election areas based on multi-level fuzzy mathematics-taking Tuha Basin as an example[J]. Chinese Geology,2014,41(3):1002−1009.
    [55]
    唐 颖,吴晓丹,李乐忠,等. 富油煤原位热解地下加热技术及其高效工艺[J]. 洁净煤技术,2023,29(12):42−50.

    TANG Ying,WU Xiaodan,LI Lezhong,et al. Heating technology of in-situ pyrolysis for tar-rich coal and its high efficiency process[J]. Clean Coal Technology,2023,29(12):42−50.
    [56]
    王 苗,王长安,宁 星,等. 富油煤原位热解技术研究现状及进展[J/OL]. 煤炭学报:1−15[2024−02−20]. DOI:10.13225/j.cnki. jccs.2023.0790.

    WANG Miao,WANG Changan,NING Xing, et al. Researchprogress of in-situ pyrolysis technology for tar-rich coal[J]. Journal of China Coal Society:1−15[2024−02−20]. DOI: 10.13225/j.cnki.jccs.2023.0790.

Catalog

    Article views (162) PDF downloads (80) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return