Advance Search

DONG Donglin,ZHANG Longqiang,ZHANG Enyu,et al. A rapid identification model of mine water inrush based on PSO-XGBoost[J]. Coal Science and Technology,2023,51(7):72−82

. DOI: 10.13199/j.cnki.cst.2023-0446
Citation:

DONG Donglin,ZHANG Longqiang,ZHANG Enyu,et al. A rapid identification model of mine water inrush based on PSO-XGBoost[J]. Coal Science and Technology,2023,51(7):72−82

. DOI: 10.13199/j.cnki.cst.2023-0446

A rapid identification model of mine water inrush based on PSO-XGBoost

Funds: 

National Natural Science Foundation of China (41972255); National Key Researchand Development Program of China (2017YFC0804104); Joint Funds of the National Natural Science Foundation of China(U1710258)

More Information
  • Received Date: March 29, 2023
  • Available Online: June 20, 2023
  • Mine water inrush is one of the main threats to mine safety production. Rapid analysis of the cause of water inrush and accurate identification of water inrush source are the key steps of mine water inrush disaster control. In order to effectively prevent and control mine water inrush disaster and identify mine water inrush source accurately and quickly, a mine water inrush source identification model (PSO-XGBoost) based on particle swarm optimization algorithm (PSO) and limit gradient lifting regression tree (XGBoost) was proposed. The efficiency and accuracy of water inrush source identification were further improved by the efficient parameter global search model, and the model was successfully applied to the Laohutai mine in Fushun coal field, Liaoning Province to verify the practicability of the model. Based on the spectral data of 40 groups of water samples from Laohutai mine, the original spectral data were preprocessed by multiple scattering correction, smoothing denoising, standardization and principal component analysis, and the training set and test set were divided according to the ratio of 7∶3 according to stratified random sampling. Secondly, the individual optimal value and the global optimal value of particles are initialized, and PSO is used to iteratively optimize seven parameters of XGBoost algorithm, such as learning_rate, n_estimatiors, max_depth, etc., to construct the classification and recognition model under the optimal parameter combination. To further investigate the superiority of the model, the average discrimination accuracy and log loss value were selected as evaluation indexes to compare the classification recognition results of PSO-XGBoost model with PSO-SVM and PSO-RF models, while the generalization ability of each model was evaluated by 100 repetitions of cross-validation. The comparison results showed that the average discrimination accuracies of XGBoost, PSO-SVM, PSO-RF and PSO-XGBoost models for the test set data were 87.76%, 87.56%, 91.67% and 91.67%, respectively. For repeated cross-validation, the average accuracy of XGBoost, PSO-SVM, PSO-RF, and PSO-XGBoost models were 87.76%, 87.56%, 90.63%, and 93.18%, respectively, with corresponding log-loss averages of 0.5453, 0.5460, 0.5623, and 0.4534, respectively. Comprehensive analysis of evaluation indexes shows that PSO-XGBoost model has higher discrimination accuracy and better generalization ability in mine water inrush source identification.

  • [1]
    WU Qiang,MU Wenping,XING Yuan,et al. Source discrimination of mine water inrush using multiple methods: a case study from the Beiyangzhuang Mine, Northern China[J]. Bulletin of Engineering Geology and the Environment,2019,78(1):469−482. doi: 10.1007/s10064-017-1194-1
    [2]
    吴群英,彭 捷,迟宝锁,等. 神南矿区煤炭绿色开采的水资源监测研究[J]. 煤炭科学技术,2021,49(1):304−311.

    WU Qunying,PENG Jie,CHI Baosuo,et al. Researoh on water resources monitoring of green coal mining in Shenan Ming Anea[J]. Coal Science and Technology,2021,49(1):304−311.
    [3]
    武 强,赵苏启,董书宁,等. 《煤矿安全规程》(防治水部分)修改技术要点剖析[J]. 中国煤炭地质,2012,24(7):34−37.

    WU Qiang,ZHAO Suqi,DONG Shuning,et al. Analysis of the technical points of the revision of “Coal Mine Safety Regulations” (Part of Water Prevention and Control)[J]. China Coal Geology,2012,24(7):34−37.
    [4]
    曾一凡,孟世豪,吕 扬,等. 基于矿井安全与生态水资源保护等多目标约束的超前疏放水技术[J]. 煤炭学报,2022,47(8):3091−3100.

    ZENG Yifan,MENG Shihao,LYU Yang,et al. Advanced drainage technology based on multi-objective constraint of mine safety and water resources protection[J]. Journal of China Coal Society,2022,47(8):3091−3100.
    [5]
    曾一凡,武 强,杜 鑫,等. 再论含水层富水性评价的“富水性指数法”[J]. 煤炭学报,2020,45(7):2423−2431.

    ZENG Yifan,WU Qiang,DU Xin,et al. Further research on “water-richness index method” for evaluation of aquifer water abundance[J]. Journal of China Coal Society,2020,45(7):2423−2431.
    [6]
    董东林,孙文洁,朱兆昌,等. 基于GIS-BN技术的范各庄矿煤12底板突水态势评价[J]. 煤炭学报,2012,37(6):999−1004.

    DONG Donglin,SUN Wenjie,ZHU Zhaochang,et al. Water-inrush assessment of coal 12 floor using a GIS-based bayesian network for Fangezhuang Coal Mine with collapse column[J]. Journal of China Coal Society,2012,37(6):999−1004.
    [7]
    高小伟,黄 欢. 基于水量水位变化及水化学特征的突水水源判别[J]. 煤炭技术,2018,37(9):198−200.

    GAO Xiaowei,HUANG Huan. Discrimination of water bursting source based on change of water quantity and water level and hydrochemical characteristics[J]. Coal Technology,2018,37(9):198−200.
    [8]
    石 磊,徐楼英. 基于水化学特征的聚类分析对矿井突水源判别[J]. 煤炭科学技术,2010,38(3):97−100.

    SHI Lei,XU Louying. Prediction of mine water inrush sources based on cluster analysis of hydrogeochem ical features[J]. Coal Science and Technology,2010,38(3):97−100.
    [9]
    连会青,刘德民,尹尚先. 水化学综合识别模式在矿井水源判别中的应用[J]. 煤炭工程,2012(8):107−109.

    LIAN Huiqing,LIU Demin,YIN Shangxian. Application of hydrochemistry comprehensive identification mode to distinguish mine water resources[J]. Coal Engineering,2012(8):107−109.
    [10]
    董东林,张 健,林 刚,等. 矿井涌(突)水源混合水识别模型研究[J]. 煤炭工程,2020,52(12):124−127.

    DONG Donglin,ZHANG Jian,LIN Gang,et al. Identification model of the source of water-inrush[J]. Coal Engineering,2020,52(12):124−127.
    [11]
    马 雷,钱家忠,赵卫东,等. 基于GIS的矿井水害防治辅助决策支持系统[J]. 煤田地质与勘探,2014,42(5):44−49.

    MA Lei,QIAN Jiazhong,ZHAO Weidong et al. GIS-based decision-making support system for prevention and control of water hazards in coal mines[J]. Coal Geology & Exploration,2014,42(5):44−49.
    [12]
    孙亚军,杨国勇,郑 琳. 基于GIS的矿井突水水源判别系统研究[J]. 煤田地质与勘探,2007,35(2):34−37.

    SUN Yajun,YANG Guoyong,ZHENG Lin. Distinguishing system study on resource of mine water inrush based on GIS[J]. Coal Geology & Exploration,2007,35(2):34−37.
    [13]
    TERRY Plank, H. LANGMUIR Charles. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1997, 145(3).
    [14]
    曾一凡,梅傲霜,武 强,等. 基于水化学场与水动力场示踪模拟耦合的矿井涌(突)水水源判识[J]. 煤炭学报,2022,47(12):4482−4494.

    ZENG Yifan,MEI Aoshuang,WU Qiang,et al. Source discrimination of mine water inflow or inrush using hydrochemical field and hydrodynamic field tracer simulation coupling[J]. Journal of China Coal Society,2022,47(12):4482−4494.
    [15]
    孙文洁,杨 恒,徐陈超,等. 基于多元统计分析的东欢坨矿突水水源判别研究[J]. 煤炭工程,2021,53(9):112−116.

    SUN Wenjie,YANG Heng,XU Chenchao,et al. Discrimination on mine water inrush source in Donghuantuo mine based on multivariate statistical analysis[J]. Coal Engineering,2021,53(9):112−116.
    [16]
    黄平华,陈建生. 基于多元统计分析的矿井突水水源Fisher识别及混合模型[J]. 煤炭学报,2011,36(S1):131−136.

    HUANG Pinghua,CHEN Jiansheng. Fisher indentify and mixing model based on multivariate statistical analysis of mine water inrush sources[J]. Journal of China Coal Society,2011,36(S1):131−136.
    [17]
    李 帅,王 震,史继彪,等. 模糊数学在煤矿突水水源判别中的应用[J]. 煤矿安全,2012,43(7):136−139.

    LI Shuai,WANG Zhen,SHI Jibiao,et al. Application of Fuzzy Mathematics in Discriminating Sources of Water Inrush in Coal Mine[J]. Coal Mine Safety,2012,43(7):136−139.
    [18]
    朱赛君,姜春露,毕 波,等. 基于组合权-改进灰色关联度理论的矿井突水水源识别[J]. 煤炭科学技术,2022,50(4):165−172.

    ZHU Saijun,JIANG Chunlu,BI Bo,et al. Identification of water inrush source based on combined weight-theory of improved gray relational degree[J]. Coal Science and Technology,2022,50(4):165−172.
    [19]
    王 欣,葛恒清,张凯婷,等. 基于遗传BP神经网络的矿井突水水源识别[J]. 淮阴师范学院学报(自然科学版),2017,16(4):307−311.

    WANG Xin,GE Hengqing,ZHANG Kaiting,et al. Water source recognition of mine inflow based on the GA-BP neural network[J]. Journal of huaiyin teachers college (Natural science edition),2017,16(4):307−311.
    [20]
    邵良杉,李相辰. 基于MIV-PSO-SVM模型的矿井突水水源识别[J]. 煤炭科学技术,2018,46(8):183−190.

    SHAO Liangshan,LI Xiangchen. Indentification of mine water inrush source based on MIV-PSO-SVM[J]. Coal Science and Technology,2018,46(8):183−190.
    [21]
    张瑞钢,钱家忠,马 雷,等. 可拓识别方法在矿井突水水源判别中的应用[J]. 煤炭学报,2009,34(1):33−38.

    ZHANG Ruigang,QIAN Jiazhong,MA Lei,et al. Application of extension identification method in mine water-bursting source discrimination[J]. Journal of China Coal Society,2009,34(1):33−38.
    [22]
    王 亚,周孟然,闫鹏程,等. 基于极限学习机的矿井突水水源快速识别模型[J]. 煤炭学报,2017,42(9):2427−2432.

    WANG Ya,ZHOU Mengran,YAN Pengcheng,et al. A rapid identification model of mine water inrush based on extreme learning machine[J]. Journal of China Coal Society,2017,42(9):2427−2432.
    [23]
    董东林,陈昱吟,倪林根,等. 基于WOA-ELM算法的矿井突水水源快速判别模型[J]. 煤炭学报,2021,46(3):984−993.

    DONG Donglin,CHEN Yuyin,NI Lingen,et al. Fast discriminant model of mine water inrush source based on WOA-ELM algorithm[J]. Journal of China Coal Society,2021,46(3):984−993.
    [24]
    王甜甜,靳德武,刘 基,等. 动态权-集对分析模型在矿井突水水源识别中的应用[J]. 煤炭学报,2019,44(9):2840−2850.

    WANG Tiantian,JIN Dewu,LUI Ji,et al. Application of dynamic weight-set pair analysis model in mine water inrush discrimination[J]. Journal of China Coal Society,2019,44(9):2840−2850.
    [25]
    周孟然,来文豪,王 亚,等. CNN在煤矿突水水源LIF光谱图像识别的应用[J]. 光谱学与光谱分析,2018,38(7):2262−2266.

    ZHOU Mengran,LAI Wenhao,WANG Ya,et al. Application of CNN in LIF fluorescence spectrum image recognition of mine water inrush[J]. Spectroscopy and Spectral Analysis,2018,38(7):2262−2266.
    [26]
    范劭博,张中杰,黄 健. 决策树剪枝加强的关联规则分类方法[J]. 计算机工程与应用,2023,59(5):87−94.

    FAN Shaobo,ZHANG Zhongjie,HUANG Jian. Association rule classification method strengthened by decision tree pruning[J]. Computer Engineering and Applications,2023,59(5):87−94.
    [27]
    杭 琦,杨敬辉. 机器学习随机森林算法的应用现状[J]. 电子技术与软件工程,2018(24):125−127.

    HANG Qi,YANG Jinghui. The current state of application of machine learning random forest algorithms[J]. The Application of Computer Technology,2018(24):125−127.
    [28]
    李继君,薛 阳,余桂希,等. 基于支持向量机的煤矿井水害水源自动识别方法研究[J]. 华北科技学院学报,2015,12(2):25−29.

    LI Jijun,XUE Yang,YU Guixi,et al. Research on method of automatic recognition of water sources based on Support vector machine[J]. Journal of North China Institute of Science and Technology,2015,12(2):25−29.
    [29]
    田东雨,何玉珠,宋 平. 基于灰狼优化算法的SVM的图像噪声识别[J]. 电子测量技术,2019,42(4):90−94.

    TIAN Dongyu,HE Yuzhu,SONG Ping. Approach for image noise recognition by optimizing SVM using grey wolf optimization algorithm[J]. Electronic Measurement Technology,2019,42(4):90−94.
    [30]
    田 野,闵锦涛. 基于PSO-XGBoost算法的多衰退特征锂离子电池SOH估计[J]. 电工材料,2023,184(1):23−27.

    TIAN Ye,MIN Jintao. SOH Prediction of lithium ion battery with multiple degradation characteristics based on PSO-XGBoost algorithm[J]. Electrotechnical materials,2023,184(1):23−27.
    [31]
    张 涛,张明辉,李清伟,等. 基于粒子群-支持向量机的时间序列分类诊断模型[J]. 同济大学(自然科学版),2016,44(9):1450−1457.

    ZHANG Tao,ZHANG Minghui,LI Qingwei,et al. Time series classification diagnosis model based on partical swarm optimization and support vector machine[J]. Journal of TongJi University(Natural Science),2016,44(9):1450−1457.
    [32]
    周 旭,朱 毅,张九零,等. 基于PSO-XGBoost的煤自燃程度预测研究[J]. 煤矿安全与环保,2022,49(6):79−84.

    ZHOU Xu,ZHU Yi,ZHANG Jiuling,et al. Study on prediction model of coal spontaneous combustion based on PSO-XGBoost[J]. Mining Safety Environmental Protection,2022,49(6):79−84.
    [33]
    王雪阳,史攀飞. 蚁群算法与模拟退火、遗传算法比较分析[J]. 无线互联网科技,2015,65(13):126−127.

    WANG Xueyang,SHI Panfei. Comparative analysis of ant colony algorithm with simulated annealing and genetic algorithm[J]. Wireless Internet Technology,2015,65(13):126−127.
    [34]
    王海军,乔 烨. PSO-SVM模型在葡萄酒品质分类中的应用研究[J]. 计算机与数字工程,2012,40(8):146−148.

    WANG Haijun,QIAO Ye. Wine Quality Classification model based on PSO-SVM[J]. Computer And Digital Engineering,2012,40(8):146−148.
    [35]
    李祚泳,汪嘉杨,郭 淳. PSO算法优化BP网络的新方法及仿真实验[J]. 电子学报,2008(11):2224−2228.

    LI Zuoyong,WANG Jiayang,GUO Chun. A new method of BP network optimized based on particle swarm optimization and simulation test[J]. Acta Electronica Sinica,2008(11):2224−2228.

Catalog

    Article views (245) PDF downloads (118) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return