高级检索

冲击地压煤层智能开采关键技术研究与实践

祁和刚, 夏永学, 智宝岩, 秦子晗, 程健, 王凯, 王书文, 王宾昌, 杨光宇

祁和刚,夏永学,智宝岩,等. 冲击地压煤层智能开采关键技术研究与实践[J]. 煤炭科学技术,2024,52(9):112−124

. DOI: 10.12438/cst.2024-0859
引用本文:

祁和刚,夏永学,智宝岩,等. 冲击地压煤层智能开采关键技术研究与实践[J]. 煤炭科学技术,2024,52(9):112−124

. DOI: 10.12438/cst.2024-0859

QI Hegang,XIA Yongxue,ZHI Baoyan,et al. Engineering application and demonstration of intelligent mining control technology for rockburst coal seam[J]. Coal Science and Technology,2024,52(9):112−124

. DOI: 10.12438/cst.2024-0859
Citation:

QI Hegang,XIA Yongxue,ZHI Baoyan,et al. Engineering application and demonstration of intelligent mining control technology for rockburst coal seam[J]. Coal Science and Technology,2024,52(9):112−124

. DOI: 10.12438/cst.2024-0859

冲击地压煤层智能开采关键技术研究与实践

基金项目: 

天地科技股份有限公司科技创新创业资金专项资助项目(2021-TD-ZD007);国家自然科学基金面上资助项目(52174118)

详细信息
    作者简介:

    祁和刚: (1959—),男,上海人,教授级高级工程师,硕士。E-mail:qiheg@chinacoal.com

    通讯作者:

    夏永学: (1980—),男,湖南郴州人,研究员,博士。E-mail:14563277@qq.com

  • 中图分类号: TD324

Engineering application and demonstration of intelligent mining control technology for rockburst coal seam

Funds: 

Science and Technology Innovation  Fund Project of Tiandi Science & Technology Co.,Ltd. (2021-TD-ZD007); National Natural Science Foundation of China (52174118)

More Information
    Author Bio:

    QI Hegang: 祁和刚,男,上海人,教授级高工,中国矿业大学兼职教授。曾任中国中煤能源集团有限公司总工程师,中煤能源股份公司副总裁,中煤能源技术研究总院院长,中国煤炭学会副理事长。现任中国煤炭科工集团有限公司科学技术委员会顾问委员,特聘专家,清华大学互联网产业研究院顾问委员。主要成果:主持和参与国家863、科技支撑计划项目以及国家级科技项目10余项,获得国家科技进步二等奖1项,省部级科技进步奖30余项,出版专著3部。研究方向:长期从事采矿工程、技术研究和战略规划等工作。先后获得全国优秀科技工作者、孙越崎能源大奖、全国杰出工程师奖,煤炭工业突出贡献专家、享受国务院政府特殊津贴

  • 摘要:

    如何实现深部冲击地压煤层智能安全高效开采是煤炭开采面临的一项重大工程技术难题。该问题的核心内涵在于冲击地压煤层开采的智能化、无人化和本质安全化,通过煤岩冲击风险的智能精准感知与预警,以及采掘工程的自适应与自优化,形成智能防冲控采技术,实现由工程致灾向工程防灾、工程减灾的根本转变。通过开采源头设计、顶板区域压裂、局部靶向治理、强化巷道支护等措施为冲击地压煤层安全高效开采创造低应力环境和巷道安全空间。在此基础上,开发融合静态地质、动态监测、工况环境、人员定位、生产组织、历史数据等信息的大数据分析软件平台,以及融合冲击地压决策信息的智能化开采控制系统,将防冲信息源转化为智能开采控制源,形成了“低压快推,中压慢采,高压停产”的柔性智能推采新模式。通过现场应用表明,在智能防冲控采区,工作面及巷道矿压显现程度更小,煤岩能量释放更稳定,有利于冲击产能的合理释放。

    Abstract:

    How to achieve intelligent, safe and efficient mining of rockburst coal seams is a major engineering and technical challenge facing deep coal mining. The core connotation of this issue lies in the intelligent, unmanned, and inherently safe mining of coal seams with rockburst. Through accurate perception and intelligent early warning of coal and rock burst risks, as well as self-adaptation and self-optimization of mining engineering, intelligent anti-burst and mining control technologies are formed to achieve a fundamental shift from engineering-induced disasters to engineering-prevented and mitigated disasters. By implementing measures such as mining source design, roof area fracturing, localized targeted management, and strengthening roadway support, a low-stress environment and safe roadway space are created for the safe and efficient mining of coal seams with rock burst. On this basis, a big data analysis software platform that integrates static geological, dynamic monitoring, working conditions, personnel positioning, production organization, historical data and other information, as well as an intelligent mining control system that integrates impact pressure decision-making information, has been developed. The anti-impact information source has been transformed into an intelligent mining control source, forming a new flexible intelligent mining model of "low pressure fast pushing, medium pressure slow mining, and high pressure production stop". Field application shows that in the intelligent anti-impact and control mining area, the degree of mine pressure in working face and roadway is smaller,, and the energy release of coal and rock is more stable, which is conducive to the reasonable release of impact mine production capacity.

  • 图  1   冲击地压煤层智能安全高效开采技术路径

    Figure  1.   Technical path for intelligent, safe, and efficient mining of rockburst coal seam

    图  2   区域压裂卸压防冲原理示意

    Figure  2.   Schematic diagram of regional fracturing, pressure relief, and anti-collision principle

    图  3   地面区域压裂成套装备示意

    Figure  3.   Schematic diagram of the complete equipment for fracturing in ground area

    图  4   井下区域压裂成套装备示意

    Figure  4.   Schematic diagram of complete equipment for fracturing in underground areas

    图  5   区域压裂效果示意

    Figure  5.   Schematic diagram of regional fracturing effect

    图  6   智能防冲控采的技术框架

    Figure  6.   Technical framework of intelligent anti-shock control mining

    图  7   综合预警模型

    Figure  7.   Comprehensive early warning model diagram

    图  8   综采工作面的智能开采控制系统拓扑

    Figure  8.   Topology of intelligent mining control system for fully-mechanized mining face

    图  9   局部靶向卸压工艺示意

    Figure  9.   Schematic diagram of local targeted pressure relief process

    图  10   矿井典型钻孔柱状

    Figure  10.   Typical borehole column of the mine

    图  11   矿井初期开采布局

    Figure  11.   Initial mining layout of mine

    图  12   巷道位置与支承压力分布

    1—高应力区掘巷;2—沿空掘巷;3—宽煤柱掘巷

    Figure  12.   Location of roadway and distribution of bearing pressure

    图  13   井上下顶板区域压裂防冲示意

    Figure  13.   Schematic diagram of fracturing and anti-scouring in roof area above and below the well

    图  14   智能防冲控采技术路线

    Figure  14.   Schematic diagram of intelligent anti-scouring and control mining technology route

    图  15   大数据平台实时监测界面

    Figure  15.   Real-time monitoring interface of big data platform

    图  16   冲击地压智能控采地面监控中心

    Figure  16.   Intelligent control and mining ground monitoring center for impact ground pressure

    图  17   工作面压力显现情况对比

    Figure  17.   Comparison of pressure manifestation on working face

    图  18   微震监测情况对比

    Figure  18.   Comparison of microseismic monitoring

  • [1] 潘一山,肖永惠,罗浩,等. 冲击地压矿井安全性研究[J]. 煤炭学报,2023,48(5):1846−1860.

    PAN Yishan,XIAO Yonghui,LUO Hao,et al. Study on safety of rockburst mine[J]. Journal of China Coal Society,2023,48(5):1846−1860.

    [2] 齐庆新,潘一山,李海涛,等. 煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J]. 煤炭学报,2020,45(5):1567−1584.

    QI Qingxin,PAN Yishan,LI Haitao,et al. Theoretical basis and key technology of prevention and control of coal-rock dynamic disasters in deep coal mining[J]. Journal of China Coal Society,2020,45(5):1567−1584.

    [3] 王国法,潘一山,赵善坤,等. 冲击地压煤层如何实现安全高效智能开采[J]. 煤炭科学技术,2024,52(1):1−14.

    WANG Guofa,PAN Yishan,ZHAO Shankun,et al. How to realize safe-efficient-intelligent mining of rock burst coal seam[J]. Coal Science and Technology,2024,52(1):1−14.

    [4] 潘俊锋,夏永学,王书文,等. 我国深部冲击地压防控工程技术难题及发展方向[J]. 煤炭学报,2024,49(3):1291−1302.

    PAN Junfeng,XIA Yongxue,WANG Shuwen,et al. Technical difficulties and emerging development directions of deep rock burst prevention in China[J]. Journal of China Coal Society,2024,49(3):1291−1302.

    [5] 窦林名,田鑫元,曹安业,等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报,2022,47(1):152−171.

    DOU Linming,TIAN Xinyuan,CAO Anye,et al. Present situation and problems of coal mine rock burst prevention and control in China[J]. Journal of China Coal Society,2022,47(1):152−171.

    [6] 秦子晗,李伟东,冯美华,等. 冲击地压智能化防治系统架构及关键技术[J]. 煤炭科学技术,2022,50(8):1−7.

    QIN Zihan,LI Weidong,FENG Meihua,et al. Structure and key technologies of intelligent prevention and control system of rock burst[J]. Coal Science and Technology,2022,50(8):1−7.

    [7] 姜福兴,张翔,朱斯陶. 煤矿冲击地压防治体系中的关键问题探讨[J]. 煤炭科学技术,2023,51(1):203−213.

    JIANG Fuxing,ZHANG Xiang,ZHU Sitao. Discussion on key problems in prevention and control system of coal mine rock burst[J]. Coal Science and Technology,2023,51(1):203−213.

    [8] 张俊文,宋治祥,刘金亮,等. 煤矿深部开采冲击地压灾害结构调控技术架构[J]. 煤炭科学技术,2022,50(2):27−36.

    ZHANG Junwen,SONG Zhixiang,LIU Jinliang,et al. Architecture of structural regulation technology for rock burst disaster in deep mining of coal mine[J]. Coal Science and Technology,2022,50(2):27−36.

    [9] 潘一山,肖永惠,李忠华,等. 冲击地压矿井巷道支护理论研究及应用[J]. 煤炭学报,2014,39(2):222−228.

    PAN Yishan,XIAO Yonghui,LI Zhonghua,et al. Study of tunnel support theory of rockburst in coal mine and its application[J]. Journal of China Coal Society,2014,39(2):222−228.

    [10] 祁和刚,马世志,郑忠友,等. 井工煤矿技术变革研究与中煤集团具体实践[J]. 中国煤炭,2023,49(5):80−86.

    QI Hegang,MA Shizhi,ZHENG Zhongyou,et al. Research on the technological transformation of underground coal mine and concrete practice of China National Coal Group[J]. China Coal,2023,49(5):80−86.

    [11] 姜耀东,赵毅鑫. 我国煤矿冲击地压的研究现状:机制、预警与控制[J]. 岩石力学与工程学报,2015,34(11):2188−2204.

    JIANG Yaodong,ZHAO Yixin. State of the art:investigation on mechanism,forecast and control of coal bumps in China[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2188−2204.

    [12] 潘俊锋,康红普,闫耀东,等. 顶板“人造解放层” 防治冲击地压方法、机理及应用[J]. 煤炭学报,2023,48(2):636−648.

    PAN Junfeng,KANG Hongpu,YAN Yaodong,et al. The method,mechanism and application of preventing rock burst by artificial liberation layer of roof[J]. Journal of China Coal Society,2023,48(2):636−648.

    [13] 潘俊锋,冯美华,卢振龙,等. 煤矿冲击地压综合监测预警平台研究及应用[J]. 煤炭科学技术,2021,49(6):32−41.

    PAN Junfeng,FENG Meihua,LU Zhenlong,et al. Research and application of comprehensive monitoring and early warning platform for coal mine rock burst[J]. Coal Science and Technology,2021,49(6):32−41.

    [14] 祁和刚,夏永学,陆闯,等. 冲击地压矿井智能化防冲控采技术的思考[J]. 煤炭科学技术,2022,50(1):151−158.

    QI Hegang,XIA Yongxue,LU Chuang,et al. Thinking about intelligent technology of rockburst prevention and controlled mining in rockburst mine[J]. Coal Science and Technology,2022,50(1):151−158.

    [15] 夏永学,张晨阳,杜涛涛,等. 磨砂射流轴向切顶压裂工艺研发及应用[J]. 煤炭学报,2024,49(S1):36−44.

    XIA Yongxue,ZHANG Chenyang,DU Taotao,et al. Process research and application of axial roof cutting technology of abrasive jet and fracture[J]. Journal of China Coal Society,2024,49(S1):36−44.

    [16] 夏永学,鞠文君,苏士杰,等. 冲击地压煤层水力扩孔掏槽防冲试验研究[J]. 采矿与岩层控制工程学报,2020,2(1):84−91.

    XIA Yongxue,JU Wenjun,SU Shijie,et al. Experimental study on hydraulic reaming of gutters in coal seam with impact pressure[J]. Journal of Mining and Strata Control Engineering,2020,2(1):84−91.

    [17] 康红普,王国法,姜鹏飞,等. 煤矿千米深井围岩控制及智能开采技术构想[J]. 煤炭学报,2018,43(7):1789−1800.

    KANG Hongpu,WANG Guofa,JIANG Pengfei,et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1000m[J]. Journal of China Coal Society,2018,43(7):1789−1800.

    [18] 康红普,冯彦军,赵凯凯. 煤矿岩层压裂技术与装备的发展方向[J]. 采矿与岩层控制工程学报,2024,6(1):5−8.

    KANG Hongpu,FENG Yanjun,ZHAO Kaikai. Development trends in hydraulic fracturing technology and equipment for strata control in underground coal mines[J]. Journal of Mining and Strata Control Engineering,2024,6(1):5−8.

    [19] 夏永学,潘俊锋,谢非,等. 井下超长水平孔分段压裂防冲机理及效果[J]. 煤炭学报,2022,47(S1):115−124.

    XIA Yongxue,PAN Junfeng,XIE Fei,et al. Anti-scour mechanism and effect of segmented fracturing in ultra-long horizontal hole underground[J]. Journal of China Coal Society,2022,47(S1):115−124.

    [20] 夏永学,冯美华,王书文,等. 基于理论和现场探测相结合的冲击危险性评价方法[J]. 采矿与岩层控制工程学报,2021,3(4):112−119.

    XIA Yongxue,FENG Meihua,WANG Shuwen,et al. Risk assessment method of rock burst based on the combination of theory and field detection[J]. Journal of Mining and Strata Control Engineering,2021,3(4):112−119.

图(18)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  31
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-01
  • 网络出版日期:  2024-09-19
  • 刊出日期:  2024-09-24

目录

    /

    返回文章
    返回