高级检索

流变扰动效应下红砂岩敏感邻域范围试验研究

王波, 任永政, 田志银, 马世纪, 高翔宇, 孙宏旭, 王军, 黄万朋

王 波,任永政,田志银,等. 流变扰动效应下红砂岩敏感邻域范围试验研究[J]. 煤炭科学技术,2025,53(4):255−265. DOI: 10.12438/cst.2023-1825
引用本文: 王 波,任永政,田志银,等. 流变扰动效应下红砂岩敏感邻域范围试验研究[J]. 煤炭科学技术,2025,53(4):255−265. DOI: 10.12438/cst.2023-1825
WANG Bo,REN Yongzheng,TIAN Zhiyin,et al. Experimental study on the sensitive neighboring area range of red sandstone under rheological disturbance effect[J]. Coal Science and Technology,2025,53(4):255−265. DOI: 10.12438/cst.2023-1825
Citation: WANG Bo,REN Yongzheng,TIAN Zhiyin,et al. Experimental study on the sensitive neighboring area range of red sandstone under rheological disturbance effect[J]. Coal Science and Technology,2025,53(4):255−265. DOI: 10.12438/cst.2023-1825

流变扰动效应下红砂岩敏感邻域范围试验研究

基金项目: 

国家自然科学基金资助项目(52274121);河北省自然科学基金资助项目(E2022508023);中央引导地方科技发展基金资助项目(226Z4101G)

详细信息
    作者简介:

    王波: (1981-),男,山东阳谷人,教授,博士。E-mail:13426356067@163.com

    通讯作者:

    任永政: (1995-),男,山东枣庄人,硕士研究生。E-mail:1170280203@qq.com

  • 中图分类号: TD315

Experimental study on the sensitive neighboring area range of red sandstone under rheological disturbance effect

  • 摘要:

    深部岩体受到“强扰动”和“高地压”的影响,失稳致灾的风险逐渐增加。开展流变扰动效应理论研究是深部岩体稳定性控制的关键环节。其中,岩石流变扰动效应敏感邻域范围的识别与分析是重要组成部分。本研究在不同围压条件下通过细分红砂岩流变的轴向应力等级,选取岩石流变扰动效应下具有标志性的累计残余变形发展阶段(衰减阶段、近似等速阶段及加速阶段),结合流变扰动效应下其与岩石微观孔隙结构动力响应的一致相关性,多角度分析红砂岩流变扰动效应敏感邻域的演化特征。研究结果表明:① 在不同围压条件下,红砂岩流变扰动累计残余变形的发展阶段表现出与静态流变相似的特征。随着围压的增加,其不同阶段的反应特征和速率都会发生显著变化,从而对岩体的稳定性和强度产生一定影响。② 利用岩石流变扰动敏感性相关系数,进一步将红砂岩流变扰动敏感邻域划分为弱敏感区和强敏感区,并指出弱敏感区应作为流变岩体稳定性防护的关键阶段。③ 综合不同围压条件下的宏微观损伤演化特征响应分析,围压增大会导致红砂岩流变扰动敏感邻域范围的收缩和弱敏感区间的减少,加速了向强敏感区的特征转化。同时,随着围压的增大处于强敏感邻域内红砂岩的破坏发育速率也随之增大。本研究通过岩石流变扰动效应下对红砂岩微观孔隙结构和宏观变形量动力响应的综合分析,多角度揭示红砂岩流变扰动效应敏感邻域的动态演化特征,为深部岩体的安全开采和稳定性评估提供理论依据。

    Abstract:

    Deep rock masses are increasingly at risk of destabilization and disaster due to “strong disturbances” and “high geostress”. Conducting rheological disturbance effect theoretical research is a key part of controlling the stability of deep rock masses. Among these, the identification and analysis of the sensitive neighboring areas affected by rock rheological disturbance effects is an important component. This study, under different confining pressure conditions, subdivides the axial stress levels of red sandstone rheology, selecting stages of cumulative residual deformation development under rock rheological disturbance effects (attenuation stage, near constant speed stage, and acceleration stage). It combines the consistency correlation between the rheological disturbance effects and the dynamic response of the micro-pore structure of the rocks, analyzing from multiple perspectives the evolutionary characteristics of the sensitive neighboring areas affected by red sandstone rheological disturbance. The results show: ① Under different confining pressure conditions, the development stages of cumulative residual deformation in red sandstone rheological disturbance show characteristics similar to static rheology. With the increase of confining pressure, the response characteristics and rates of different stages change significantly, thereby affecting the stability and strength of the rock mass. ② Using the rheological disturbance sensitivity correlation coefficient of the rocks, the sensitive neighboring areas of red sandstone rheological disturbance are further divided into weakly sensitive and strongly sensitive areas, and it is pointed out that the weakly sensitive area should be considered a key stage in the stability protection of rheological rock masses. ③ By integrating the response analysis of macro and micro damage evolution characteristics under different confining pressure conditions, an increase in confining pressure leads to a contraction of the range of red sandstone rheological disturbance sensitive neighboring areas and a reduction in the weakly sensitive intervals, accelerating the transformation towards strongly sensitive characteristics. At the same time, with the increase of confining pressure, the failure development rate of red sandstone in the strong sensitive neighborhood also increases. This study, through a comprehensive analysis of the dynamic response of the micro-pore structure and macroscopic deformation of red sandstone under rheological disturbance effects, reveals from multiple perspectives the dynamic evolutionary characteristics of the sensitive neighboring areas affected by red sandstone rheological disturbance effects, providing a theoretical basis for the safe mining and stability assessment of deep rock masses.

  • 图  1   岩石流变扰动效应微观损伤试验系统

    Figure  1.   Microscopic damage test system of rock rheological disturbance effect

    图  2   岩石试件

    Figure  2.   Rock specimen

    图  3   岩石试件流变破坏形态

    Figure  3.   Rheological failure mode of rock specimen

    图  4   不同围压岩石轴向分级加载流变曲线

    Figure  4.   Rheological curves of rock under axial graded loading with different confining pressure

    图  5   不同围压岩石流变扰动曲线

    Figure  5.   Rheological disturbance curves of rock under different confining pressure

    图  6   初始试件T2图谱曲线

    Figure  6.   T2 spectrum curves of initial specimen

    图  7   不同围压流变扰动效应下岩石T2谱曲线

    Figure  7.   T2 spectrum curves of rock under rheological disturbance effect at different confining pressure stage

    图  8   A组试件核磁共振成像

    Figure  8.   Nuclear magnetic resonance imaging of group A specimens

    图  9   B组试件核磁共振成像

    Figure  9.   Nuclear magnetic resonance imaging of group B specimens

    图  10   C组试件核磁共振成像

    Figure  10.   Nuclear magnetic resonance imaging of group C specimens

    表  1   试件三轴压缩试验数据

    Table  1   Triaxial compression test data of specimen

    试件编号高度/mm直径/mm初始孔隙率/%围压/MPa强度极限/MPa应变极限/10−2
    R-149.5724.255.61148.751.48
    R-250.2024.405.55357.211.91
    R-349.9024.505.73565.602.54
    下载: 导出CSV

    表  2   不同围压下试件T2谱曲线谱峰面积变化

    Table  2   Changes of peak area of T2 spectrum curve of specimens under different confining pressures

    围压/MPa 轴压/MPa 谱峰总面积 第1谱峰面积 第1谱峰面积
    占比/%
    第1谱峰顶点
    时间/ms
    第2谱峰面积 第2谱峰面积
    占比/%
    第2谱峰顶点
    时间/ms
    1015 175.2064 647.43130.610.72310 527.77569.4114.976
    2515 134.1575 780.14738.212.3289 354.01061.8100.00
    3416 242.3416 264.53838.614.1759 977.80361.4100.00
    4017 575.507804.8864.60.75616 770.62195.4132.194
    3014 715.8524 056.93727.69.32610 658.91572.4132.194
    3014 110.4914 246.62130.110.7239 863.87069.9132.194
    4816 237.1864 615.23228.414.17511 621.95471.6132.194
    5117 402.9531 167.0486.71.52016 235.90593.3174.753
    5015 642.2366 300.79640.310.7239 341.44059.7132.194
    3013 178.6895 687.62743.210.7237 491.06256.8114.976
    6117 628.118357.0392.00.43317 271.07998.0200.923
    下载: 导出CSV

    表  3   不同发展阶段扰动敏感性相关系数

    Table  3   Correlation coefficient of disturbance sensitivity in different development stages

    围压/MPa 轴压/MPa $ E_{\mathrm{s}} $
    1 25 0.01
    34 0.96
    40 3.14
    3 30 0.24
    48 0.93
    51 5.22
    5 30 0.17
    60 1.03
    61 2.21
    下载: 导出CSV
  • [1]

    FABRE G,PELLET F. Creep and time-dependent damage in argillaceous rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(6):950−960. doi: 10.1016/j.ijrmms.2006.02.004

    [2]

    TSAI L S,HSIEH Y M,WENG M C,et al. Time-dependent deformation behaviors of weak sandstones[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(2):144−154. doi: 10.1016/j.ijrmms.2007.04.008

    [3] 徐鹏,杨圣奇. 复合岩层三轴压缩蠕变力学特性数值模拟研究[J]. 采矿与安全工程学报,2018,35(1):179−187.

    XU Peng,YANG Shengqi. Numerical analysis of creep mechanical property for bedded composite rock[J]. Journal of Mining & Safety Engineering,2018,35(1):179−187.

    [4] 彭俊杰,李凯,祝凤金,等. 岩石单轴压缩蠕变损伤本构模型[J]. 防灾减灾工程学报,2019,39(5):835−841.

    PENG Junjie,LI Kai,ZHU Fengjin,et al. A uniaxial compression creep damage constitutive model for rock[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(5):835−841.

    [5] 李晓峰. 复杂环境下砂岩蠕变特性及损伤本构模型研究[D]. 阜新:辽宁工程技术大学,2022:15−108.

    LI Xiaofeng. Research on creep characteristics and damage constitutive model of sandstone under complex environment[D]. Fuxin:Liaoning Technical University,2022:15−108.

    [6]

    ZHANG L Z,HUANG C X,LI Z P,et al. Uniaxial creep test analysis on creep characteristics of fully weathered sandy shale[J]. Processes,2023,11(2):610. doi: 10.3390/pr11020610

    [7]

    HOU R B,CUI Q Z,WU H H,et al. Creep behavior and long-term strength characteristics of pre-peak damaged sandstone under conventional triaxial compression[J]. Scientific Reports,2023,13(1):3850. doi: 10.1038/s41598-023-31028-6

    [8]

    PAN X K,BERTO F,ZHOU X P. Creep mechanical characteristics and nonlinear viscoelastic-plastic creep model of sandstone after high temperature heat treatment[J]. Fatigue & Fracture of Engineering Materials & Structures,2023,46(8):2982−3000.

    [9] 高延法,范庆忠,崔希海,等. 岩石流变及其扰动效应试验研究[M]. 北京:科学出版社,2007:50−68.
    [10] 高延法,肖华强,王波,等. 岩石流变扰动效应试验及其本构关系研究[J]. 岩石力学与工程学报,2008,27(S1):3180−3185.

    GAO Yanfa,XIAO Huaqiang,WANG Bo,et al. Rheological disturbance effect test and constitutive relation of rock[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(S1):3180−3185.

    [11] 崔希海. 岩石流变扰动效应及试验系统研究[D]. 青岛:山东科技大学,2007.

    CUI Xihai. Disturbance effect of rock rheology and experimental system[D]. Qingdao:Shandong University of Science and Technology,2007.

    [12] 范庆忠. 岩石蠕变及其扰动效应试验研究[D]. 青岛:山东科技大学,2006.

    FAN Qingzhong. Experimental study on rock creep and its disturbance effect[D]. Qingdao:Shandong University of Science and Technology,2006.

    [13] 王青元,刘杰,王培涛,等. 冲击扰动诱发蠕变岩石加速失稳破坏试验[J]. 岩土力学,2020,41(3):781−788,798.

    WANG Qingyuan,LIU Jie,WANG Peitao,et al. Experimental investigation of accelerated failure of creep rock induced by impact disturbance[J]. Rock and Soil Mechanics,2020,41(3):781−788,798.

    [14] 王波,高延法,王军. 流变扰动效应引起围岩应力场演变规律分析[J]. 煤炭学报,2010,35(9):1446−1450.

    WANG Bo,GAO Yanfa,WANG Jun. Evolution law analysis on surrounding rock stress field by rheology disturbed effects[J]. Journal of China Coal Society,2010,35(9):1446−1450.

    [15] 王波,高昌炎,陈学习,等. 岩石流变扰动特性单轴压缩试验研究[J]. 煤炭学报,2017,42(6):1443−1450.

    WANG Bo,GAO Changyan,CHEN Xuexi,et al. Axial load test study on the perturbation properties of rock rheology[J]. Journal of China Coal Society,2017,42(6):1443−1450.

    [16] 王波,刘重阳,高昌炎,等. 强度极限邻域内岩石单轴蠕变扰动试验研究[J]. 煤炭科学技术,2018,46(7):81−86.

    WANG Bo,LIU Chongyang,GAO Changyan,et al. Experimental study on uniaxial creep disturbance of rock in the neighborhood of strength limit[J]. Coal Science and Technology,2018,46(7):81−86.

    [17] 王波,刘重阳,陈学习,等. 蠕变扰动效应下红砂岩强度极限邻域试验研究[J]. 煤炭科学技术,2021,49(9):54−60.

    WANG Bo,LIU Chongyang,CHEN Xuexi,et al. Experimental study on range of strength limit neighborhood of red sandstone under effect of creep disturbance[J]. Coal Science and Technology,2021,49(9):54−60.

    [18] 王波,陆长亮,刘重阳,等. 流变扰动效应引起岩石微观损伤演化试验研究[J]. 煤炭学报,2020,45(S1):247−254.

    WANG Bo,LU Changliang,LIU Chongyang,et al. Experimental study on microscopic damage evolution of rock caused by rheological disturbance effect[J]. Journal of China Coal Society,2020,45(S1):247−254.

    [19] 王波,陆长亮,黄子康,等. 岩石三轴流变扰动效应损伤演化特征试验研究[J]. 采矿与岩层控制工程学报,2021,3(4):5−14.

    WANG Bo,LU Changliang,HUANG Zikang,et al. Experimental study on damage evolution characteristics of rock under triaxial rheological disturbance[J]. Journal of Mining and Strata Control Engineering,2021,3(4):5−14.

    [20] 黄万朋,孙远翔,陈绍杰. 岩石蠕变扰动效应理论及其在深地动压工程支护中的应用[J]. 岩土工程学报,2021,43(9):1621−1630.

    HUANG Wanpeng,SUN Yuanxiang,CHEN Shaojie. Theory of creep disturbance effect of rock and its application in support of deep dynamic engineering[J]. Chinese Journal of Geotechnical Engineering,2021,43(9):1621−1630.

    [21] 刘重阳. 岩石蠕变扰动效应试验系统及强度极限邻域范围研究[D]. 廊坊:华北科技学院,2020.

    LIU Chongyang. Rock creep disturbance effect test system and strength limit neighborhood range research[D]. Langfang:North China Institute of Science and Technology,2020.

    [22] 刘之喜,孟祥瑞,赵光明,等. 真三轴压缩下砂岩的能量和损伤分析[J]. 岩石力学与工程学报,2023,42(2):327−341.

    LIU Zhixi,MENG Xiangrui,ZHAO Guangming,et al. Energy and damage analysis of sandstone under true triaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(2):327−341.

    [23] 王波,高昌炎,陈学习,等. 岩石流变扰动效应三轴压缩试验研究[J]. 煤炭学报,2018,43(S2):403−411.

    WANG Bo,GAO Changyan,CHEN Xuexi,et al. Triaxial compression test of rock rheological disturbance effect[J]. Journal of China Coal Society,2018,43(S2):403−411.

    [24] 白松涛,程道解,万金彬,等. 砂岩岩石核磁共振T2谱定量表征[J]. 石油学报,2016,37(3):382−391,414. doi: 10.7623/syxb201603010

    BAI Songtao,CHENG Daojie,WAN Jinbin,et al. Quantitative characterization of sandstone NMR T2 spectrum[J]. Acta Petrolei Sinica,2016,37(3):382−391,414. doi: 10.7623/syxb201603010

    [25] 王波,马世纪,田志银,等. 不同加载条件下含瓦斯煤岩强度极限邻域范围研究[J]. 煤炭科学技术,2024,52(7):114−125.

    WANG Bo,MA Shiji,TIAN Zhiyin,et al. Study on the strength limit neighborhood range of gas-bearing coal rock under different loading conditions[J]. Coal Science and Technology,2024,52(7):114−125.

    [26] 王波,陆长亮,崔峰,等. 基于CT扫描岩石蠕变扰动特性单轴压缩试验研究[J]. 采矿与岩层控制工程学报,2023,5(3):43−53.

    WANG Bo,LU Changliang,CUI Feng,et al. Uniaxial compression test research on rock creep disturbance characteristics based on CT scanning[J]. Journal of Mining and Strata Control Engineering,2023,5(3):43−53.

    [27] 王波,高昌炎,陈学习,等. 岩石流变扰动效应三轴试验系统[J]. 煤炭学报,2018,43(2):433−440.

    WANG Bo,GAO Changyan,CHEN Xuexi,et al. Triaxial test system for rock rheological perturbation effect[J]. Journal of China Coal Society,2018,43(2):433−440.

  • 期刊类型引用(23)

    1. 王龙伟,杨亦浩. 寺河矿区煤层气穿采空区水平井技术应用. 能源与节能. 2025(01): 35-39 . 百度学术
    2. 陶雪峰,石必明,岳基伟,梁跃辉,钟珍,张海卿,梅文强,薛勇林,彭杰,张铖铖. 废弃矿井可采煤层群瓦斯资源特征及其应用. 煤炭科学技术. 2025(03): 161-173 . 本站查看
    3. 易旺,梁龙军,颜利冲,颜智华,陈捷,高为,娄毅,阳富芹,胡海洋,朱家伟. 贵州煤矿区煤层气(瓦斯)高效抽采关键技术. 煤炭科学技术. 2025(03): 340-355 . 本站查看
    4. 华心祝,秦浩,郝定溢,石必明,林柏泉,赵志根,张苗. 我国废弃/关闭煤矿瓦斯抽采现状及发展趋势. 煤炭科学技术. 2025(04): 15-28 . 本站查看
    5. 张学博,王攀,王豪. 小断层影响下的采空区瓦斯运移规律研究. 煤炭科学技术. 2024(04): 214-230 . 本站查看
    6. 徐影,李亚辉,杨樱花,刘卫娟. 穿采空区煤层气水平井井眼与管柱相容性分析及应用研究. 煤. 2024(09): 28-31 . 百度学术
    7. 李延河,倪小明,贾晋生. 平顶山矿区多煤层卸压立体抽采模式与工程示范. 煤炭科学技术. 2024(09): 162-172 . 本站查看
    8. 王阳,向杰,秦勇,陈尚斌,朱炎铭,黄曼莉,石莹. 阳泉-晋城矿区关闭煤矿煤层气资源特征及抽采模式. 煤炭科学技术. 2024(12): 165-179 . 本站查看
    9. 王争. 晋城矿区采空区地面井井身结构优化分析及工程应用. 中国煤层气. 2024(06): 3-7 . 百度学术
    10. 苏善博,张培河,李林,降文萍,王正喜. 寺河井田穿煤柱下组煤煤层气水平井钻井技术研究. 煤炭工程. 2023(03): 78-83 . 百度学术
    11. 徐华龙. 煤与煤层气协调开发三维仿真设计研究. 中国煤炭. 2023(05): 87-93 . 百度学术
    12. 甄少杰. 井下煤层气抽采工艺的优化研究. 山西化工. 2023(11): 177-178+181 . 百度学术
    13. 赵学良,贾航,罗华贵. 赵庄煤矿工作面分源联合立体抽采技术应用研究. 煤炭工程. 2022(01): 74-79 . 百度学术
    14. 孟召平,李国富,田永东,王宇红,李超,陈浩越,吴迪. 晋城矿区废弃矿井采空区煤层气地面抽采研究进展. 煤炭科学技术. 2022(01): 204-211 . 本站查看
    15. 石雷雷,张辉,闫丰. 晋城煤层气产业示范基地建设存在的质量问题和发展路径研究. 中国石油和化工标准与质量. 2022(04): 21-23 . 百度学术
    16. 周显俊,李国富,李超,王争,李江彪. 煤矿采空区煤层气地面开发技术及工程应用——以沁水盆地晋城矿区为例. 煤田地质与勘探. 2022(05): 66-72 . 百度学术
    17. 张江华,秦勇,李国富,孟召平,李国庆,李军军,季长江,陈召英. 煤炭采空区下伏煤层气资源潜力及抽采效果——以山西省晋城西部矿区为例. 天然气工业. 2022(06): 146-153 . 百度学术
    18. 崔晓松,周瑞,张凯. 沁水盆地寿阳西部地区煤层气资源潜力评价. 煤炭科学技术. 2022(07): 224-232 . 本站查看
    19. 刘一楠,吴翔,李勇,徐立富. 古交矿区太原组煤层气开发地质特征及产能优化. 煤炭科学技术. 2022(08): 125-132 . 本站查看
    20. 姚红生,杨松,刘晓,申建,张占龙. 低效煤层气井多次压裂增效开发技术研究. 煤炭科学技术. 2022(09): 121-129 . 本站查看
    21. 李国富,张遂安,季长江,李军军,王朝帅. 煤矿区煤层气“四区联动”井上下联合抽采模式与技术体系. 煤炭科学技术. 2022(12): 14-25 . 本站查看
    22. 降文萍,柴建禄,张群,张培河,姜在炳. 基于煤层气与煤炭协调开发的地面抽采工程部署关键技术进展. 煤炭科学技术. 2022(12): 50-61 . 本站查看
    23. 降文萍,张培河,刘娜娜,王晶,杜新锋,杨刚,何庆宏. 我国煤层气标准体系构建. 煤炭工程. 2021(08): 1-6 . 百度学术

    其他类型引用(6)

图(10)  /  表(3)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  7
  • PDF下载量:  28
  • 被引次数: 29
出版历程
  • 收稿日期:  2023-11-30
  • 网络出版日期:  2025-04-14
  • 刊出日期:  2025-04-24

目录

    /

    返回文章
    返回