移动扫码阅读
天山北麓位于新疆准噶尔盆地南缘,地处欧亚大陆腹地,属于大陆干旱性气候,蒸发量远大于降水量,生态环境脆弱。以往研究表明,天山北麓“三水”转化规律为天山融雪在基岩山区形成径流,流经坡降相对较小的山前洼地或丘陵区域时补给或转化为河谷潜流,至冲洪积扇区域时转化为地下水径流,最终汇至准噶尔盆地,通过蒸发蒸腾方式排泄[1-3]。地表径流在转化为地下潜水流向盆地的过程中,受到的蒸发作用不明显,因而这些潜水资源成为工农业以及居民生活用水的主要来源[4-5]。而在山前洼地或丘陵地区,由于人类采矿活动导致地表塌陷,形成塌陷通道,致使潜水资源流失[6-11]。通过文献调研,国内外学者对于天山博格达峰北麓区域,因采矿活动引起的地下水资源变化研究较少,而对于采煤过程中潜水资源流失的研究更少。
因此,笔者以天山博格达峰北麓铁厂沟河山前丘陵冲洪积层潜水为研究对象,采用水文地质测绘、地面物探、水文地质钻探、数值模拟等手段,对研究区采煤活动影响下的潜水资源流失特征进行研究,为水资源保护与综合利用提供依据。
铁厂沟河发源于天山东段博格达峰北麓,自南向北,穿越山前丘陵地带流入米东区境内,如图1所示。冰川及冰雪融水、山区的大气降水是该河及其冲洪积层潜水的主要补给水源。
图1 铁厂沟位置卫星图
Fig.1 Satellite map of Tiechanggou
由于多期构造运动影响,博格达峰北麓多发育NEE向逆冲推覆构造,其中八道湾向斜为区域内的次一级构造单元[12-15],该区发育有侏罗系(J)和第四系(Q)地层,其中侏罗系西山窑组为含煤地层,主要可采煤层为45号、43号煤,煤厚为40~60 m。受八道湾向斜影响,南翼含煤地层近直立,北翼含煤地层倾角达50°。铁厂沟河由南向北径流过程中侵蚀切割煤系地层,并沿沟流及河床两岸形成宽度数十米至数百米第四系冲洪积砂砾石层条带,而研究区即位于铁厂沟河冲洪积层与八道湾向斜煤系地层交汇区域,如图2所示。
图2 研究区地质平面图及剖面图
Fig.2 Study area plan and section
由于45号和43号煤层较厚且出露,八道湾向斜两侧存在众多大小煤矿,部分矿井已开采至河道底部,如图3所示。
图3 小窑采空区与铁厂沟河空间关系示意
Fig.3 Schematic of spatial relationship between small kiln goaf and Tiechanggou River
通过现场观测发现,在铁厂沟河与向斜北翼45号煤层露头交汇处存在一塌陷坑,平面形状呈圆形,直径10 m左右,距离河道约15 m,平面上处于河流冲洪积砂砾石层范围内(图4)。通过近距离观察,塌陷坑内部存在流水声音,考虑到地表水没有通过塌陷裂缝直接灌入,分析认为由于铁厂沟河冲洪积层直接不整合接触煤层及基岩,小窑采动破坏了留设的防隔水煤柱,导致塌陷坑处存在沟通潜水含水层与小窑采空区的集中通道,造成潜水资源的流失。
图4 塌陷坑现场照
Fig.4 Site photo of collapse pit
采用高密度电阻率法对研究区冲洪积砂砾石松散覆盖层厚度及底界起伏形态进行了探测,探测范围如图5所示,控制面积0.08 km2。通过野外施工、数据采集及解释分析,绘制出第四系松散层底界等高线图(图6)以及松散层等厚线图(图7)。
图6 研究区松散层底界面标高等值线
Fig.6 Contour map of the bottom interface elevation of the loose layer in the study area
图7 研究区松散层厚度等值线
Fig.7 Contour map of loose layer thickness in the study area
铁厂沟上游松散层砂砾石层底部标高为+800 m左右,下游标高为+745 m,相对高差55 m,呈逐渐下降趋势;研究区松散层厚度为20~60 m,沿河流方向,逐渐变厚,在铁厂沟下游断面厚度达60 m。研究区松散砂砾石层呈现上(游)高下(游)低,上薄下厚的空间展布特征,与山前丘陵地带冲洪积层展布规律基本一致。
以塌陷坑为中心,施工了14个水文地质探查钻孔,钻孔呈勘探线形式等距离布置,各钻孔之间间距约30 m(图5)。钻孔均完整揭露松散含水层,对研究区潜水含水层水位进行了观测,(水位钻孔潜水位标高统计见表1)同时,利用8号钻孔开展了一次单孔定流量似稳定流抽水试验,其单位涌水量q为0.146 L/(s·m)、渗透系数K为0.233 m/d,富水性中等。
图5 物探与钻探工程探测范围示意
Fig.5 Schematic of exploration scope of geophysical exploration and drilling engineering
表1 水文钻孔潜水位标高统计
Table 1 Statistics of groundwater level elevation of hydrological borehole
钻孔编号1234567891011121314水位标高/m783.2775.3772.2781.7783778778.3781.4782781.4781.2779.2782.8784.2水位埋深/m17.930.727.320.620.230.420.720.520.919.819.519.619.117.2
研究区潜水位标高为+772.2~+784.2 m,上游潜水位略高于下游,水位最低点为3号钻孔,潜水面呈现出以3号钻孔为中心的降落漏斗形态,而3号钻孔即位于地表塌陷坑边缘(图8),因此,根据研究区潜水流场特征,结合塌陷坑内存在流水声现象,确定该塌陷坑区域存在沟通潜水含水层与井下采空区的集中通道。
图8 研究区潜水位标高等值线图
Fig.8 Contour map of phreatic level elevation in the study area
基于潜水渗流原理,采用FEFLOW有限元数值模拟方法[16-20],对地表塌陷坑集中导水通道处的潜水流失量进行预测与分析。
根据水文地质钻探探查范围确定水文地质模型范围,模拟区面积19 065 m2,长度约144 m,宽度约137 m,近似平行四边形(图9)。底部边界取第四系砂砾石层含水层底板,顶部边界取第四系砂砾石层顶板(地表)。
图9 模拟区水文地质三维模型
Fig.9 Three dimensional hydrogeological model of simulation area
模拟区第四系潜水在塌陷坑集中导水通道处渗漏进入采空区,形成以集中通道为中心的降落漏斗,钻孔水位动态观测显示流场基本稳定。模型西南部边界为露天剥离坑,经探查在该区域第四系含水层底板标高高于研究区潜水水位标高,且第四系地层趋于尖灭,因此,将该边界定为零流量边界,其他边界为给定水头边界,水位值利用已知钻孔水位数据插值获取。对研究区进行三角网格剖分,共剖分为2 298个结点,2 177个三角形单元,如图10所示。
图10 模型网格剖分及边界条件
Fig.10 Model mesh generation and boundary conditions
根据定解条件,采用潜水三维稳定流、均质、各向异性、数学模型进行描述,其数学模型表示如下:
式中:Kxx、Kyy、Kzz分别为X、Y、Z轴方向的渗透系数;D为渗流区域;H为水位标高,m;K为渗透系数,m/d;W为垂向水量交换强度,m3/(d·m2);n为边界外法线方向;h为给定水头值,m;Γ1为第一类边界;Γ2为零流量边界。
将研究区各参数代入到数值模型中,即构成第四系砂砾石层含水层塌陷坑潜水流失量的计算模型。
表2 研究区水文地质参数
Table 2 Hydrogeological parameters of the study area
Kxx=Kyy/(m·d-1)Kzz/(m·d-1)μ0.2330.046 60.2
以S3号钻孔水位为参考,设置排泄边界水位,进行稳定流计算,通过调整排泄水位及排泄区范围计算潜水流场(图11)基本接近实际观测流场(图8)。在此基础上,计算得出第四系潜水经塌陷坑集中裂隙的排泄水量(漏失量)为86 m3/h。
图11 模拟区潜水流场
Fig.11 Flow field of diving in simulation area
由于该区煤系地层本身富水性弱,正常情况下,矿井开采井下几乎无涌水,但是,研究区矿井井下涌水量一直稳定在96 m3/h左右,潜水漏失量预测值与实际井下涌水量较为吻合,分析表明第四系潜水为该区井下涌水的主要补给水源。
1)铁厂沟河与八道湾向斜北翼煤系地层交汇区第四系冲洪积层呈南(上游)厚北(下游)薄特征,松散层底界标高沿河流方向呈逐渐降低趋势,与山前沟流冲洪积特征基本一致;该区潜水含水层单位涌水量为0.146 L/(s·m),渗透系数为0.233 m/d,富水性中等。
2)采煤影响下,研究区潜水流场为以地表塌陷坑为中心的降落漏斗,塌陷坑区存在沟通潜水含水层与小窑采空区的集中导水通道;
3)采用FEFLOW数值模拟计算塌陷坑处的潜水漏失量约为86 m3/h,与井下涌水量数值基本吻合。
4)煤矿开采是引发该区潜水资源流失的主要原因,采动形成的塌陷、裂缝是潜水流失的主要通道,针对塌陷、裂缝的治理工程是保护潜水资源的主要途径。
[1] 乔晓英,王文科,陈 英,等.天山北麓蓄水构造模式与水循环特征[J].地球科学与环境学报,2005,27(3):33-37.
QIAO Xiaoying,WANG Wenke,CHEN Ying,et al. Storage water structure modes and water cycle characteristic on Tianshan Mountain foot[J]. Journal of Earth Sciences and Environment,2005,27(3):33-37.
[2] 王文明.天山北麓三水转化与地下水库调蓄研究[D].西安:长安大学,2007.
WANG Wenming. Researches on the conversion among precipitation、surface water and groundwater and the regulation and storage of groundwater reservoir in the northern piedmont of Tianshan Mountain[D].Xi’an:Chang’an University,2007.
[3] 天山北麓山前倾斜平原区乌鲁木齐河流域-玛纳斯河流域三水转化及水资源合理开发利用[R].新疆:新疆地矿局第二水文地质工程地质队,1990.
[4] 张 静.干旱区地下水位变化引起的表生生态效应及评价—以天山北麓中段为例[D].西安:长安大学,2011.
ZHANG Jing. Study on supergene ecological effect and evaluate excited by groundwater level-Take the middle of the northern piedmont of Tianshan as an example. [D]. Xi'an:Chang'an University,2011.
[5] 乔晓英.准噶尔盆地南缘地下水环境演化及其可再生性研究[D].西安:长安大学,2008.
QIAO Xiaoying. Study on the groundwater environment evolution and its renewability in the south edge of Junggar Basin[D]. Xi'an:Chang'an University,2008.
[6] 张东升,刘洪林,范刚伟,等.新疆大型煤炭基地科学采矿的内涵与展望[J].采矿与安全工程学报,2015,32(1):1-6.
ZHANG Dongsheng,LIU Honglin,FAN Gangwei,et al. Connotation and prospection on scientific mining of large Xinjiang coal base[J]. Journal of Mining & Safety Engineering,2015,32(1):1-6.
[7] 侯凤兰,赵雪辉.新疆煤炭开采主要生态环境问题及治理对策[J].环境与可持续发展,2015,40(4):160-161.
HOU Fenglan,ZHAO Xuehui. On main ecological environment problems and control countermeasures of coal mining in Xinjiang[J]. Environment and Sustainable Development,2015,40(4):160-161.
[8] 曾 强,李根生,董敬宣,等.新疆煤炭资源开采典型生态环境问题及对策[J].矿业安全与环保,2017,44(1):106-110.
ZENG Qiang,LI Gensheng,DONG Jingxuan,et al. Typical Ecological and Environmental Issues and Countermeasures in Coal Mining in Xinjiang Region[J]. Mining Safety & Environment Protection,2017,44(1):106-110.
[9] 代革联,薛小渊,牛 超,等.煤炭开采对相邻区域生态潜水流场扰动特征[J].煤炭学报,2019,44(3):701-708.
DAI Gelian,XUE Xiaoyuan,NIU Chao,et al.Disturbance characteristics of coal mining to the eco-phreatic flow field in adjacent regions[J]. Journal of China Coal Society,2019,44(3):701-708.
[10] 葛睿智.急倾斜特厚煤层开采空区充填技术研究[D].西安:西安科技大学,2017.
GE Ruizhi. Research on the mined-out-area filling technology of steep and thick coal seam[D].Xi’an:Xi’an University of Science and Technology,2017.
[11] 陈建强,铁厂沟急倾斜临界角煤层综放开采高产高效关键技术研究[D].西安:西安科技大学,2007.
CHEN Jianqiang. Study of key technology of high yield and efficiency on fully mechanized top coal caving in steep critical angle seam in Tiechanggou Coalmine[D].Xi’an:Xi’an University of Science and Technology,2007.
[12] 李本亮,管树巍,陈竹新,等.断层相关褶皱理论与引用:以准噶尔盆地南缘地质构造为例[M].北京:石油工业出版社,2010.1-270.
[13] 陈 科,王镇远,刘 飞,等.博格达山北缘前陆褶皱冲断带构造特征及其动力学意义[J].地质科学,2012,47(4):1041-1051.
CHEN Ke,WANG Zhenyuan,LIU Fei,et al. The structural characteristics along the northern piedmont of bogedashan and its dynamic signiifcances[J]. Chinese Journal of Geology,2012,47(4):1041-1051.
[14] 王 凯,计文化,孟 勇,等.天山造山带东段构造变形对增生造山末期的响应[J].大地构造与成矿学,2019,43(5):894-910.
WANG Kai,JI Wenhua,MENG Yong,et al. Deformation in Eastern Tianshan Orogenic Belt:response to the final stage of accretionary orogenesis[J]. Geotectonica et Metallogenia,2019,43(5):894-910.
[15] 梁舒艺,吴孔友,裴仰文,等.准噶尔盆地南缘东段构造解析和构造解释模型建立[J].古地理学报,2019,21(5):817-824.
LIANG Shuyi,WU Kongyou,PEI Yangwen,et al. Structural analysis and modeling on the eastern segment of southern margin of Junggar Basin[J]. Journal of Palaeogeography,2019,21(5):817-824.
[16] 贺晓浪,蒲治国,丁 湘,等. 矿井涌水量预测方法的改进及结果准确性判定[J]. 煤炭科学技术,2020,48(8):229-236.
HE Xiaolang,PU Zhiguo,DING Xiang,et al. Improved methods for prediction of mine water inflow and determination of accuracy of results[J]. Coal Science and Technology,2020,48(8):229-236.
[17] 尹尚先,徐 维,尹慧超,等. 深部开采底板厚隔水层突水危险性评价方法研究[J]. 煤炭科学技术,2020,48(1):83-89.
YIN Shangxian,XU Wei,YIN Huichao,et al. Study on risk assessment method of water inrush from thick floor aquifuge in deep mining[J]. Coal Science and Technology,2020,48(1):83-89.
[18] 朱宗奎,黄鑫磊. 基于Visual MODFLOW的煤层底板突水量预测研究[J]. 煤炭科学技术,2020,48(8):157-163.
ZHU Zongkui,HUANG Xinlei. Study on water inrush quantity prediction from coal seam floor based on Visual MODFLOW[J]. Coal Science and Technology,2020,48(8):157-163.
[19] 姚丽利,胡立堂,龚芳芳,等. 北京市平原区地下水开采量反演的数值模拟方法[J]. 北京师范大学学报(自然科学版),2017,53(4):436-442.
YAO Lili,HU Litang,GONG Fangfang,et al.Numerical simulations for groundwater withdrawal inversion in Beijing plain[J]. Journal of Beijing Normal University(Natural Science),2017,53(4):436-442.
[20] 潘卫东,姜 鹏,许延春,等. 薄基岩近距离煤层开采“水-岩”致灾演变模型及规律研究[J].采矿与安全工程学报,2020,37(3):543-552.
PAN Weidong,JIANG Peng,XU Yanchun,et al.The model and law of “water-rock” disaster in near-distance coal seam mining in thin bedrock[J]. Journal of Mining & Safety Engineering,2020,37(3):543-552.